二维码英文

中文体育类核心期刊

中国人文社会科学期刊AMI综合评价(A刊)核心期刊

《中文社会科学引文索引》(CSSCI)来源期刊

美国《剑桥科学文摘》(CSA)收录期刊

中国高校百佳科技期刊

GU Yaodong, XU Yining. Development of Intelligent Assessment and Prediction Model for Children and Adolescents' Posture Health: A Case Study Focusing on the Knee Valgus and Varus in Primary School-aged Children and Adolescents[J]. Journal of Shanghai University of Sport, 2025, 49(4): 9-19. DOI: 10.16099/j.sus.2024.08.18.0006
Citation: GU Yaodong, XU Yining. Development of Intelligent Assessment and Prediction Model for Children and Adolescents' Posture Health: A Case Study Focusing on the Knee Valgus and Varus in Primary School-aged Children and Adolescents[J]. Journal of Shanghai University of Sport, 2025, 49(4): 9-19. DOI: 10.16099/j.sus.2024.08.18.0006

Development of Intelligent Assessment and Prediction Model for Children and Adolescents' Posture HealthA Case Study Focusing on the Knee Valgus and Varus in Primary School-aged Children and Adolescents

More Information
  • Received Date: August 17, 2024
  • Revised Date: March 23, 2025
  • Issue Publish Date: April 14, 2025
  • Objectives 

    This study aims to apply a variety of machine learning algorithms to build a risk prediction model for knee valgus and varus in school-aged children and adolescents. By comparing and selecting the optimal model, it aims to provide a scientific explanation to contribute to the exploration and development of intelligent models for assessing and predicting children and adolescents' posture health.

    Methods 

    514 primary school students from major cities in Zhejiang Province were selected for the study. Comprehensive data, including demographics, anthropometrics, body composition, posture, and both static and dynamic plantar pressure distribution, were collected. The sample was divided into a training set (n = 360) and a validation set (n = 154) using simple random sampling in a 7∶3 ratio. 6 machine learning algorithms were employed to construct predictive models for knee valgus and varus: K-Nearest Neighbors (KNN), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Multiple Logistic Regression (LM), and Support Vector Machine (SVM). The predictive performance of each model was evaluated using the Receiver Operating Characteristic (ROC) curve, and the Shapley Additive Explanations (SHAP) algorithm was utilized to assess the influence of various data dimensions on the model outputs.

    Results 

    The study identified 190 cases of knee valgus and 80 cases of knee varus among the subjects. The XGBoost model demonstrated the highest area under the ROC curve (AUC) at 0.738, indicating the superior predictive performance for knee valgus. Conversely, the RF model achieved the highest AUC at 0.824 for knee varus, marking it as the best predictive model. The SHAP analysis revealed that the key features influencing the XGBoost model's predictions for knee valgus were age, leg length difference, and ear-shoulder distance, while for the RF model's predictions of knee varus, the most significant factors were knee extension angle, leg length difference, ear-shoulder distance, dynamic plantar arch index, arch status deformation, and age.

    Conclusion 

    The model demonstrated certain superior predictive performances, validating that the findings can guide the construction of early intervention tools for managing children and adolescents' postural health.

  • [1]
    陶芳标. 构建面向健康中国2030青少年健康促进体系[J]. 中国学校卫生,2023,44(1):1-5
    [2]
    兰丽莎,郑富强. 健康中国背景下青少年儿童健康促进路径研究[J]. 当代体育科技,2021,11(24):213-215
    [3]
    柳鸣毅,王梅,徐杰,等. “健康中国2030” 背景下中国青少年体育公共政策研究[J]. 体育科学,2018,38(2):91-97
    [4]
    万炳军,曾肖肖,史岩,等. “健康中国” 视域下青少年体育使命及其研究维度的诠释[J]. 体育科学,2017,37(10):3-12
    [5]
    魏铭,牛雪松,吴昊. 体医融合视域下青少年体态异常防治的现实路径[J]. 沈阳体育学院学报,2022,41(4):57-63
    [6]
    郝紫微,张洁,王含笑. 步态分析技术在儿童膝外翻早期干预中的应用进展[J]. 甘肃医药,2023,42(5):395-397
    [7]
    HARDGRIB N,GOTTLIEBSEN M,RAHBEK O,et al. Correlation of radiological and clinical measurement of genu valgum in children[J]. Danish Medical Journal,2018,65(5):A5479
    [8]
    张剑坤,覃佳强. 重度膝外翻的外科治疗进展[J]. 现代医药卫生,2014,30(15):2287-2289
    [9]
    胡祖杰,刘传康. 儿童X型腿、O型腿的评估与治疗进展[J]. 现代医药卫生,2013,29(10):1512-1513
    [10]
    李正,王慧贞,吉士俊. 实用小儿外科学:下册 [M]. 北京:人民卫生出版社,2001:1589-1595
    [11]
    MACDONALD J,RODENBERG R,SWEENEY E. Acute knee injuries in children and adolescents:A review[J]. JAMA Pediatrics,2021,175(6):624-630 doi: 10.1001/jamapediatrics.2020.6130
    [12]
    HOLDER J,VAN DRONGELEN S,UHLRICH S D,et al. Peak knee joint moments accurately predict medial and lateral knee contact forces in patients with valgus malalignment[J]. Scientific Reports,2023,13(1):2870
    [13]
    TSAI A. A deep learning approach to automatically quantify lower extremity alignment in children[J]. Skeletal Radiology,2022,51(2):381-390 doi: 10.1007/s00256-021-03844-2
    [14]
    AMASYA H,YILDIRIM D,AYDOGAN T,et al. Cervical vertebral maturation assessment on lateral cephalometric radiographs using artificial intelligence:Comparison of machine learning classifier models[J]. Dento Maxillo Facial Radiology,2020,49(5):20190441 doi: 10.1259/dmfr.20190441
    [15]
    KOLAGHASSI R,AL-HARES M K,MARCELLI G,et al. Performance of deep learning models in forecasting gait trajectories of children with neurological disorders[J]. Sensors,2022,22(8):2969 doi: 10.3390/s22082969
    [16]
    MORBIDONI C,CUCCHIARELLI A,AGOSTINI V,et al. Machine-learning-based prediction of gait events from EMG in cerebral palsy children[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2021,29:819-830 doi: 10.1109/TNSRE.2021.3076366
    [17]
    KOKKOTIS C,MOUSTAKIDIS S,TSATALAS T,et al. Leveraging explainable machine learning to identify gait biomechanical parameters associated with anterior cruciate ligament injury[J]. Scientific Reports,2022,12(1):6647 doi: 10.1038/s41598-022-10666-2
    [18]
    卜志军,卢冠杭,王禹毅,等. 临床预测模型结果的可视化分析及其在中医领域的应用研究[J]. 现代中医临床,2024,31(2):13-18
    [19]
    REGIER D A,KUHL E A,KUPFER D J. The DSM-5:Classification and criteria changes[J]. World Psychiatry,2013,12(2):92-98 doi: 10.1002/wps.20050
    [20]
    MICHAUDET C,EDENFIELD K M,NICOLETTE G W,et al. Foot and ankle conditions:Pes planus[J]. FP Essentials,2018,465:18-23
    [21]
    KITAOKA H B,AHN T K,LUO Z P,et al. Stability of the arch of the foot[J]. Foot & Ankle International,1997,18(10):644-648
    [22]
    曹坤鹏,银小芹,杨冠强,等. 青少年体力活动问卷(PAQ-A)中文版区域适用性的影响因素分析[J]. 当代体育科技,2018,8(2):241-243
    [23]
    李新,王艳,李晓彤,等. 青少年体力活动问卷(PAQ-A)中文版的修订及信效度研究[J]. 北京体育大学学报,2015,38(5):63-67
    [24]
    WANG Y,WANG J Q. Standard definition of child overweight and obesity worldwide. Authors' standard compares well with WHO standard[J]. BMJ,2000,321(7269):1158 doi: 10.1136/bmj.321.7269.1158
    [25]
    胡亚美,江载芳. 诸福棠实用儿科学[M]. 7版. 北京:人民卫生出版社,2002:23-28
    [26]
    LAFOND D,DESCARREAUX M,NORMAND M C,et al. Postural development in school children:A cross-sectional study[J]. Chiropractic & Osteopathy,2007,15:1
    [27]
    NG J W G,PRICE K,DEEPAK S. Knee pain in children[J]. Paediatrics and Child Health,2019,29(12):521-527 doi: 10.1016/j.paed.2019.09.002
    [28]
    HEWETT T E,MYER G D. The mechanistic connection between the trunk,hip,knee,and anterior cruciate ligament injury[J]. Exercise and Sport Sciences Reviews,2011,39(4):161-166 doi: 10.1097/JES.0b013e3182297439
    [29]
    HARVEY W F,YANG M,COOKE T D V,et al. Association of leg-length inequality with knee osteoarthritis:A cohort study[J]. Annals of Internal Medicine,2010,152(5):287-295 doi: 10.7326/0003-4819-152-5-201003020-00006
    [30]
    MUFTY S,VANDENNEUCKER H,BELLEMANS J. The influence of leg length difference on clinical outcome after revision TKA[J]. The Knee,2014,21(2):424-427 doi: 10.1016/j.knee.2012.09.007
    [31]
    JOHNSON E K,CHIARELLO C M. The slump test:The effects of head and lower extremity position on knee extension[J]. The Journal of Orthopaedic and Sports Physical Therapy,1997,26(6):310-317 doi: 10.2519/jospt.1997.26.6.310
    [32]
    KHOSRAVI M,ARAZPOUR M,SHARAFAT VAZIRI A. An evaluation of the use of a lateral wedged insole and a valgus knee brace in combination in subjects with medial compartment knee osteoarthritis (OA)[J]. Assistive Technology,2021,33(2):87-94 doi: 10.1080/10400435.2019.1595788
    [33]
    RAPOSO F,RAMOS M,CRUZ A L. Effects of exercise on knee osteoarthritis:A systematic review[J]. Musculoskeletal Care,2021,19(4):399-435 doi: 10.1002/msc.1538
    [34]
    DING Y,LIU B G,QIAO H,et al. Can knee flexion contracture affect cervical alignment and neck tension? A prospective self-controlled pilot study[J]. The Spine Journal,2020,20(2):251-260 doi: 10.1016/j.spinee.2019.09.008
    [35]
    CHEN Y R,LI J,YANG H T,et al. Differences in patellofemoral alignment between static and dynamic extension positions in patients with patellofemoral pain[J]. Orthopaedic Journal of Sports Medicine,2024,12(3):23259671231225177
    [36]
    WHEATLEY M G A,THELEN D G,DELUZIO K J,et al. Knee extension moment arm variations relate to mechanical function in walking and running[J]. Journal of the Royal Society,Interface,2021,18(181):20210326 doi: 10.1098/rsif.2021.0326
    [37]
    MOZAFARIPOUR E,SEIDI F,MINOONEJAD H,et al. Can lower extremity anatomical measures and core stability predict dynamic knee valgus in young men?[J]. Journal of Bodywork and Movement Therapies,2021,27:358-363
    [38]
    PIÑERO-FUENTES E,CANAS-MORENO S,RIOS-NAVARRO A,et al. A deep-learning based posture detection system for preventing telework-related musculoskeletal disorders[J]. Sensors,2021,21(15):5236
  • Related Articles

    [1]HUANG Jingyi, ZHANG Sheng. Predictive Variables and Combined Paths of Physical Activity Intention-Behavior Gap Based on Random Forest Approach[J]. Journal of Shanghai University of Sport, 2024, 48(10): 19-28. DOI: 10.16099/j.sus.2024.04.27.0002
    [2]FU Quan, TANG Yaxin. Effect of Aerobic Exercise and rTMS on Clinical Intervention in Adolescent Depression[J]. Journal of Shanghai University of Sport, 2024, 48(5): 94-102. DOI: 10.16099/j.sus.2023.10.17.0004
    [3]XING Xiaorui, CHENG Wei, TIAN Haili, XU Bingxiang, YAN Hongmei, LIU Cheng, SUN Qin, WANG Ruwen, WAN Kang, ZHANG Yiyin, WANG Ru. Experience, Inspiration, and Implementation Framework of Pre-exercise Testing and Evaluation Clinical Pathway Construction for Diabetic Patients[J]. Journal of Shanghai University of Sport, 2024, 48(5): 81-93. DOI: 10.16099/j.sus.2023.07.07.0001
    [4]SHI Huimin, ZHANG Dongying, ZHANG Yonghui. Can Olympic Medals Be Predicted?Based on the Interpretable Machine Learning Perspective[J]. Journal of Shanghai University of Sport, 2024, 48(4): 26-36. DOI: 10.16099/j.sus.2023.10.27.0002
    [5]WANG Pikun, SUN Qian, LIU Yi, MA Hongwei, GAO Yongyan, YANG Dongqiang. Model Validation of Physical Activity Energy Expenditure Based on Feature Engineering and Deep Learning[J]. Journal of Shanghai University of Sport, 2022, 46(10): 52-64. DOI: 10.16099/j.sus.2022.02.11.0004
    [6]SHU La, CHEN Guozhuang. Feasibility of Functional Movement Screen in Predicting Sports Injury: A Meta Analysis of Prospective Cohort Study[J]. Journal of Shanghai University of Sport, 2021, 45(7): 84-94. DOI: 10.16099/j.sus.2021.07.009
    [7]JI Yunfeng, REN Jie, SHI Zhihao. Real-time Tracking of Table Tennis Robot's Vision System[J]. Journal of Shanghai University of Sport, 2020, 44(6): 70-75. DOI: 10.16099/j.sus.2020.06.009
    [8]ZOU Limin, MAO Lijuan, LIANG Leichao, TANG Yunqi, LI Zhen. Sports Biomechanics Characteristic of Knee Joint During Sidestep-cutting Maneuver among Female Football Players on Unanticipated Condition[J]. Journal of Shanghai University of Sport, 2019, 43(5): 77-83. DOI: 10.16099/j.sus.2019.05.010
    [9]LUO Xiaojie, WANG Hui, ZHANG Chonglin. Predictive Equation for Body Fat Percentage in College Students Based on Artificial Neural Network[J]. Journal of Shanghai University of Sport, 2019, 43(3): 121-126. DOI: 10.16099/j.sus.2019.03.018
    [10]GUO Liang, LI Li, WU Ying. Research on Predicting Trunk Isometric Strength with Core Stability Related Measurements[J]. Journal of Shanghai University of Sport, 2018, 42(5): 93-98. DOI: 10.16099/j.sus.2018.05.014

Catalog

    Article views (42) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return