Citation: | LIU Weina, ZHANG Sen, HE Wenke, QI Zhengtang. Precision Intervention of Targeted Neuropsychiatric Disorders Treatment: The Tapping, Application and Transformation of Exerkins[J]. Journal of Shanghai University of Sport, 2025, 49(3): 35-51, 74. DOI: 10.16099/j.sus.2024.09.16.0004 |
Exerkines, which serves as bioactive substances secreted by skeletal muscles and other tissues, play a crucial role in regulating nervous system function, improving neuroinflammation and promoting neurorepair. This study systematically explores the sources, transport mechanisms and the roles of exerkines in neuropsychiatric disorders, elaborates their neurobiological functions and the potential in precise interventions for neuropsychiatric disease treatment. Exerkines can be categorized into myokines, cardiokines, hepatokines, adipokines and neurokines. Their neurobiological functions include neural repair and regeneration, regulation of neuroinflammation and neurodevelopment. The factors induced by exercises transmit messages through blood circulation or vesicular transport, and exert effects on target tissues. In the precise intervention of neuropsychiatric disorders, exerkines can be utilized for personalized assessment, precise diagnosis and treatment monitoring. By integrating omics, neuroimaging and data analysis technologies, a more comprehensive understanding of the functional mechanisms of exerkines can be obtained, providing scientific evidence for precise intervention in diseases.
[1] |
GBD 2019 Mental Disorders Collaborations. Global,regional,and national burden of 12 mental disorders in 204 countries and territories,1990-2019:A systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet Psychiatry,2022,9(2):137-150 doi: 10.1016/S2215-0366(21)00395-3
|
[2] |
FERNANDO A P,ROBBINS T W. Animal models of neuropsychiatric disorders[J]. Annual Review of Clinical Psychology,2011,7:39-61 doi: 10.1146/annurev-clinpsy-032210-104454
|
[3] |
SWENSON S,BLUM K,MCLAUGHLIN T,et al. The therapeutic potential of exercise for neuropsychiatric diseases:A review[J]. Journal of the Neurological Sciences,2020,412:116763 doi: 10.1016/j.jns.2020.116763
|
[4] |
HE W K,ZHANG S,QI Z T,et al. Unveiling the potential of estrogen:Exploring its role in neuropsychiatric disorders and exercise intervention[J]. Pharmacological Research,2024,204:107201 doi: 10.1016/j.phrs.2024.107201
|
[5] |
CHOW L S,GERSZTEN R E,TAYLOR J M,et al. Exerkines in health,resilience and disease[J]. Nature Reviews. Endocrinology,2022,18(5):273-289 doi: 10.1038/s41574-022-00641-2
|
[6] |
ISLAM M R,VALARIS S,YOUNG M F,et al. Exercise hormone irisin is a critical regulator of cognitive function[J]. Nature Metabolism,2021,3(8):1058-1070 doi: 10.1038/s42255-021-00438-z
|
[7] |
EL HAYEK L,KHALIFEH M,ZIBARA V,et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF)[J]. The Journal of Neuroscience,2019,39(13):2369-2382
|
[8] |
PEDERSEN B K,FISCHER C P. Beneficial health effects of exercise:The role of IL-6 as a myokine[J]. Trends in Pharmacological Sciences,2007,28(4):152-156 doi: 10.1016/j.tips.2007.02.002
|
[9] |
饶志坚,张建红,赵杰修. 运动因子调控网络分析[J]. 中国运动医学杂志,2023,42(12):987-1000 doi: 10.3969/j.issn.1000-6710.2023.12.011
|
[10] |
张若琳,漆正堂,刘微娜. 微生物-肠-脑轴视角下色氨酸代谢介导的运动抗抑郁机制研究进展[J]. 中国运动医学杂志,2023,42(3):227-235 doi: 10.3969/j.issn.1000-6710.2023.03.008
|
[11] |
PEDERSEN B K,STEENSBERG A,FISCHER C,et al. Searching for the exercise factor:Is IL-6 a candidate?[J]. Journal of Muscle Research and Cell Motility,2003,24(2-3):113-119
|
[12] |
PEDERSEN B K,FEBBRAIO M. Muscle-derived interleukin-6:A possible link between skeletal muscle,adipose tissue,liver,and brain[J]. Brain,Behavior,and Immunity,2005,19(5):371-376
|
[13] |
MOON H Y,BECKE A,BERRON D,et al. Running-induced systemic cathepsin B secretion is associated with memory function[J]. Cell Metabolism,2016,24(2):332-340 doi: 10.1016/j.cmet.2016.05.025
|
[14] |
HAN H,ZHAO Y W,DU J D,et al. Exercise improves cognitive dysfunction and neuroinflammation in mice through Histone H3 lactylation in microglia[J]. Immunity & Ageing,2023,20(1):63
|
[15] |
王平,李佳欣,陈小龙,等. 转录因子EB在有氧运动改善高脂饮食诱导小鼠骨骼肌胰岛素抵抗中的作用[J]. 中国运动医学杂志,2024,43(3):193-204 doi: 10.3969/j.issn.1000-6710.2024.03.007
|
[16] |
税晓平,李春莹,李顺昌,等. 有氧和抗阻运动干预2型糖尿病大鼠骨骼肌脑源性神经营养因子、核因子κB及炎症指标的表达[J]. 中国组织工程研究,2022,26(5):669-675 doi: 10.12307/2022.109
|
[17] |
PARK H,POO M M. Neurotrophin regulation of neural circuit development and function[J]. Nature Reviews. Neuroscience,2013,14(1):7-23 doi: 10.1038/nrn3379
|
[18] |
张康,张业廷,付燕. 跑台运动对帕金森病模型小鼠不同脑区DAT、BDNF和TrkB表达的影响[J]. 中国运动医学杂志,2022,41(9):704-713 doi: 10.3969/j.issn.1000-6710.2022.09.006
|
[19] |
陆小香,张蕴琨,江年. 力竭运动后大鼠海马CA1区自由基、下丘脑GABA及HPA轴的动态变化[J]. 中国运动医学杂志,2007,26(5):563-567 doi: 10.3969/j.issn.1000-6710.2007.05.010
|
[20] |
LOURENCO M V,FROZZA R L,DE FREITAS G B,et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models[J]. Nature Medicine,2019,25(1):165-175 doi: 10.1038/s41591-018-0275-4
|
[21] |
WANG D C,LIN H T,LEE Y J,et al. Recovery of BDNF and CB1R in the prefrontal cortex underlying improvement of working memory in prenatal DEHP-exposed male rats after aerobic exercise[J]. International Journal of Molecular Sciences,2020,21(11):3867 doi: 10.3390/ijms21113867
|
[22] |
刘文彬,刘微娜,漆正堂. 神经营养因子介导运动的抗抑郁作用[J]. 体育科学,2018,38(10):54-66
|
[23] |
崔菊,庞静,宫环,等. GLUT4和脂联素在3T3-L1脂肪细胞中共享囊泡转运机制[J]. 医学研究杂志,2017,46(3):18-21 doi: 10.11969/j.issn.1673-548X.2017.03.006
|
[24] |
王少堃,王世强,王一杰,等. 骨骼肌介导的运动神经保护效应:作用途径和分子机制[J]. 中国体育科技,2023,59(4):58-66
|
[25] |
ZHANG S H,WU X,WANG J,et al. Adiponectin/AdiopR1 signaling prevents mitochondrial dysfunction and oxidative injury after traumatic brain injury in a SIRT3 dependent manner[J]. Redox Biology,2022,54:102390 doi: 10.1016/j.redox.2022.102390
|
[26] |
田清华,刘霞,邓鹏辉,等. 有氧运动对糖尿病大鼠学习记忆功能、海马突触可塑性及脂联素信号通路的影响[J]. 中华老年医学杂志,2024,43(3):348-353 doi: 10.3760/cma.j.issn.0254-9026.2024.03.014
|
[27] |
LI W F,ALI T,ZHENG C Y,et al. Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes[J]. Molecular Psychiatry,2022,27(2):1047-1058 doi: 10.1038/s41380-021-01327-3
|
[28] |
LEE T H,CHRISTIE B R,VAN PRAAG H,et al. AdipoRon treatment induces a dose-dependent response in adult hippocampal neurogenesis[J]. International Journal of Molecular Sciences,2021,22(4):2068 doi: 10.3390/ijms22042068
|
[29] |
李欣,余福林,高延. 跑台运动调节线粒体ATP释放改善高脂饮食大鼠的心肌损伤[J]. 心脏杂志,2024,36(3):256-261 doi: 10.12125/j.chj.202304119
|
[30] |
吴彪,范冬霞,张佳,等. PM2.5和热/冷暴露对小鼠骨骼肌和白色脂肪组织AKT/GLUT4通路的影响[J]. 环境与职业医学. 2024,41(4):356-361
|
[31] |
PENG W X,TAN C H,MO L J,et al. Glucose transporter 3 in neuronal glucose metabolism:Health and diseases[J]. Metabolism,2021,123:154869 doi: 10.1016/j.metabol.2021.154869
|
[32] |
YONAMINE C Y,MICHALANI M L E,MOREIRA R J,et al. Glucose transport and utilization in the hippocampus:From neurophysiology to diabetes-related development of dementia[J]. International Journal of Molecular Sciences,2023,24(22):16480 doi: 10.3390/ijms242216480
|
[33] |
张媛,盛蕾,刘小玮,等. 不同运动方式对肥胖大鼠肝脏脂质沉积及FGF21分泌的影响[J]. 中国应用生理学杂志,2022,38(1):47-52
|
[34] |
GENG L L,LIAO B Y,JIN L G,et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues[J]. Cell Reports,2019,26(10):2738-2752
|
[35] |
GAO Y,ZHANG W,ZENG L Q,et al. Exercise and dietary intervention ameliorate high-fat diet-induced NAFLD and liver aging by inducing lipophagy[J]. Redox Biology,2020,36:101635 doi: 10.1016/j.redox.2020.101635
|
[36] |
李良,徐建方,冯连世,等. 有氧运动和抗阻运动训练对肥胖大鼠肝脏FGF21信号通路的影响[J]. 中国运动医学杂志,2018,37(10):847-856 doi: 10.3969/j.issn.1000-6710.2018.10.007
|
[37] |
WANG D X,LIU F,ZHU L Y,et al. FGF21 alleviates neuroinflammation following ischemic stroke by modulating the temporal and spatial dynamics of microglia/macrophages[J]. Journal of Neuroinflammation,2020,17(1):257 doi: 10.1186/s12974-020-01921-2
|
[38] |
GENG L L,LAM K S L,XU A M. The therapeutic potential of FGF21 in metabolic diseases:From bench to clinic[J]. Nature Reviews. Endocrinology,2020,16(11):654-667 doi: 10.1038/s41574-020-0386-0
|
[39] |
FLIPPO K H,TRAMMELL S A J,GILLUM M P,et al. FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit[J]. Cell Metabolism,2022,34(2):317-328
|
[40] |
KURODA M,MURAMATSU R,MAEDERA N,et al. Peripherally derived FGF21 promotes remyelination in the central nervous system[J]. The Journal of Clinical Investigation,2017,127(9):3496-3509 doi: 10.1172/JCI94337
|
[41] |
李晶晶,孙晓彤,柳婷婷,等. 成纤维细胞生长因子21与妊娠期代谢性疾病的研究进展[J]. 国际妇产科学杂志,2023,50(4):400-404 doi: 10.12280/gjfckx.20230156
|
[42] |
黄嵩,王巍,牛燕媚,等. 有氧运动干预父系C57BL/6小鼠对雄性子代IGF-1表达及其甲基化的影响[J]. 中国运动医学杂志,2020,39(4):288-294 doi: 10.3969/j.issn.1000-6710.2020.04.006
|
[43] |
刘延莹,杨海平,冯庆鲲,等. 弱激光预照射联合有氧运动对增龄大鼠骨骼肌SIRTs/PGC-1α轴及IGF-1蛋白表达的影响[J]. 中国运动医学杂志,2019,38(7):577-584 doi: 10.3969/j.issn.1000-6710.2019.07.006
|
[44] |
HUANG R R,SHI J Y,WEI R H,et al. Challenges of insulin-like growth factor-1 testing[J]. Critical Reviews in Clinical Laboratory Sciences,2024,61(5):388-403 doi: 10.1080/10408363.2024.2306804
|
[45] |
程慧芳,李会会,王庆志,等. 迷走神经刺激对老龄小鼠术后认知功能障碍的影响及海马IGF-1信号通路在其中的作用[J]. 中华麻醉学杂志,2022(9):1048-1053 doi: 10.3760/cma.j.cn131073.20220617.00906
|
[46] |
RUSIN D,VAHL BECIROVIC L,LYSZCZARZ G,et al. Microglia-derived insulin-like growth factor 1 is critical for neurodevelopment[J]. Cells,2024,13(2):184 doi: 10.3390/cells13020184
|
[47] |
NUÑEZ A,ZEGARRA-VALDIVIA J,FERNANDEZ DE SEVILLA D,et al. The neurobiology of insulin-like growth factor I:From neuroprotection to modulation of brain states[J]. Molecular Psychiatry,2023,28(8):3220-3230 doi: 10.1038/s41380-023-02136-6
|
[48] |
MAGLIO L E,NORIEGA-PRIETO J A,MAROTO I B,et al. IGF-1 facilitates extinction of conditioned fear[J]. eLife,2021,10:e67267 doi: 10.7554/eLife.67267
|
[49] |
ZHANG J Y,LIU M Q,HUANG M H,et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway[J]. Pharmacological Research,2019,144:292-305 doi: 10.1016/j.phrs.2019.04.021
|
[50] |
CAVALERI D,MORETTI F,BARTOCCETTI A,et al. The role of BDNF in major depressive disorder,related clinical features,and antidepressant treatment:Insight from meta-analyses[J]. Neuroscience & Biobehavioral Reviews,2023,149:105159
|
[51] |
REED J L,TERADA T,COTIE L M,et al. The effects of high-intensity interval training,Nordic walking and moderate-to-vigorous intensity continuous training on functional capacity,depression and quality of life in patients with coronary artery disease enrolled in cardiac rehabilitation:A randomized controlled trial (CRX study)[J]. Progress in Cardiovascular Diseases,2022,70:73-83 doi: 10.1016/j.pcad.2021.07.002
|
[52] |
DELGADO-PERAZA F,NOGUERAS-ORTIZ C,SIMONSEN A H,et al. Neuron-derived extracellular vesicles in blood reveal effects of exercise in Alzheimer's disease[J]. Alzheimer's Research & Therapy,2023,15(1):156
|
[53] |
WANG J,NIU Y L,TAO H Y,et al. Knockdown of lncRNA TUG1 inhibits hippocampal neuronal apoptosis and participates in aerobic exercise-alleviated vascular cognitive impairment[J]. Biological Research,2020,53(1):53 doi: 10.1186/s40659-020-00320-4
|
[54] |
ZHOU X,DENG X H,LIU M F,et al. Intranasal delivery of BDNF-loaded small extracellular vesicles for cerebral ischemia therapy[J]. Journal of Controlled Release,2023,357:1-19 doi: 10.1016/j.jconrel.2023.03.033
|
[55] |
CADAMURO M,BRIVIO S,MERTENS J,et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor lymphangiogenesis in cholangiocarcinoma[J]. Journal of Hepatology,2019,70(4):700-709 doi: 10.1016/j.jhep.2018.12.004
|
[56] |
GIELEN S,SANDRI M,ERBS S,et al. Exercise-induced modulation of endothelial nitric oxide production[J]. Current Pharmaceutical Biotechnology,2011,12(9):1375-1384 doi: 10.2174/138920111798281063
|
[57] |
CHOI B R,JOHNSON K R,MARIC D,et al. Monocyte-derived IL-6 programs microglia to rebuild damaged brain vasculature[J]. Nature Immunology,2023,24(7):1110-1123 doi: 10.1038/s41590-023-01521-1
|
[58] |
MORLAND C,ANDERSSON K A,HAUGEN Ø P,et al. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1[J]. Nature Communications,2017,8:15557 doi: 10.1038/ncomms15557
|
[59] |
GOEL S,DUDA D,XU L,et al. Normalization of the vasculature for treatment of cancer and other diseases[J]. Physiological Reviews,2011,91(3):1071-1121 doi: 10.1152/physrev.00038.2010
|
[60] |
DU PREEZ A,ONORATO D,EIBEN I,et al. Chronic stress followed by social isolation promotes depressive-like behaviour,alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice[J]. Brain,Behavior,and Immunity,2021,91:24-47
|
[61] |
BOISSERAND L S B,GERALDO L H,BOUCHART J,et al. VEGF-C prophylaxis favors lymphatic drainage and modulates neuroinflammation in a stroke model[J]. The Journal of Experimental Medicine,2024,221(4):e20221983 doi: 10.1084/jem.20221983
|
[62] |
ZONG X M,LI Y Y,LIU C,et al. Theta-burst transcranial magnetic stimulation promotes stroke recovery by vascular protection and neovascularization[J]. Theranostics,2020,10(26):12090-12110 doi: 10.7150/thno.51573
|
[63] |
KIM H,WRANN C D,JEDRYCHOWSKI M,et al. Irisin mediates effects on bone and fat via αV integrin receptors[J]. Cell,2018,175(7):1756-1768
|
[64] |
LI D J,SUN S J,FU J T,et al. NAD+-boosting therapy alleviates nonalcoholic fatty liver disease via stimulating a novel exerkine Fndc5/irisin[J]. Theranostics,2021,11(9):4381-4402 doi: 10.7150/thno.53652
|
[65] |
HE X Y,HUA Y,LI Q,et al. FNDC5/irisin facilitates muscle−adipose−bone connectivity through ubiquitination-dependent activation of runt-related transcriptional factors RUNX1/2[J]. Journal of Biological Chemistry,2022,298(3):101679 doi: 10.1016/j.jbc.2022.101679
|
[66] |
章森,邹勇,漆正堂,等. 鸢尾素介导运动干预神经精神疾病的潜在机制[J]. 上海体育学院学报,2023,47(4):39-50
|
[67] |
MAGISTRETTI P J,ALLAMAN I. Lactate in the brain:From metabolic end-product to signalling molecule[J]. Nature Reviews. Neuroscience,2018,19(4):235-249 doi: 10.1038/nrn.2018.19
|
[68] |
WANG N,JIANG X,ZHANG S,et al. Structural basis of human monocarboxylate transporter 1 inhibition by anti-cancer drug candidates[J]. Cell,2021,184(2):370-383
|
[69] |
LIU L,MACKENZIE K R,PUTLURI N,et al. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D[J]. Cell Metabolism,2017,26(5):719-737
|
[70] |
MONSORNO K,GINGGEN K,IVANOV A,et al. Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice[J]. Nature Communications,2023,14(1):5749 doi: 10.1038/s41467-023-41502-4
|
[71] |
WANG M Z,XIE K L,ZHAO S N,et al. Aerobic exercise improves cognitive impairment in mice with type 2 diabetes by regulating the MALAT1/miR-382-3p/BDNF signaling pathway in serum-exosomes[J]. Molecular Medicine,2023,29(1):130 doi: 10.1186/s10020-023-00727-1
|
[72] |
NIU Y L,WAN C X,ZHANG J,et al. Aerobic exercise improves VCI through circRIMS2/miR-186/BDNF-mediated neuronal apoptosis[J]. Molecular Medicine,2021,27(1):4 doi: 10.1186/s10020-020-00258-z
|
[73] |
ZHANG Z F,ZOU X X,ZHANG R,et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke[J]. Aging,2021,13(2):3060-3079 doi: 10.18632/aging.202466
|
[74] |
CASTAÑO C,MIRASIERRA M,VALLEJO M,et al. Delivery of muscle-derived exosomal miRNAs induced by HIIT improves insulin sensitivity through down-regulation of hepatic FoxO1 in mice[J]. Proceedings of the National Academy of Sciences of the United States of America,2020,117(48):30335-30343
|
[75] |
LIANG X Y,FA W X,WANG N,et al. Exosomal miR-532-5p induced by long-term exercise rescues blood–brain barrier function in 5XFAD mice via downregulation of EPHA4[J]. Aging Cell,2023,22(1):e13748 doi: 10.1111/acel.13748
|
[76] |
KIM H J,SONG B K,SO B,et al. Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia:A pilot study[J]. Psychiatry Research,2014,220(3):792-796 doi: 10.1016/j.psychres.2014.09.020
|
[77] |
ZHANG J Q,RONG P J,ZHANG L J,et al. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis[J]. Science Advances,2021,7(12):eabb9888 doi: 10.1126/sciadv.abb9888
|
[78] |
王璐,闫冬,夏瑞洁,等. 运动预处理通过外泌体介导miR-146a对大鼠缺血性脑卒中炎症反应的影响[J]. 中国运动医学杂志,2023,42(11):889-898 doi: 10.3969/j.issn.1000-6710.2023.11.007
|
[79] |
DEL GIUDICE M,GANGESTAD S W. Rethinking IL-6 and CRP:Why they are more than inflammatory biomarkers,and why it matters[J]. Brain,Behavior,and Immunity,2018,70:61-75
|
[80] |
XU H,WANG J S,ZHOU Y J,et al. BDNF affects the mediating effect of negative symptoms on the relationship between age of onset and cognition in patients with chronic schizophrenia[J]. Psychoneuroendocrinology,2021,125:105121 doi: 10.1016/j.psyneuen.2020.105121
|
[81] |
王丽. 天麻素片联合盐酸帕罗西汀对老年脑卒中后焦虑抑郁患者血清BDNF、IGF-1浓度的影响[J]. 中国老年学杂志,2017,37(21):5403-5405 doi: 10.3969/j.issn.1005-9202.2017.21.083
|
[82] |
CHEN Y S,CHEN X F,LUO Z W,et al. Exercise-induced reduction of IGF1R sumoylation attenuates neuroinflammation in APP/PS1 transgenic mice[J]. Journal of Advanced Research,2024,3:25
|
[83] |
ESTEVES M,ABREU R,FERNANDES H,et al. MicroRNA-124-3p-enriched small extracellular vesicles as a therapeutic approach for Parkinson's disease[J]. Molecular Therapy,2022,30(10):3176-3192 doi: 10.1016/j.ymthe.2022.06.003
|
[84] |
CAO Z,MIN J H,TAN Q L,et al. Circulating insulin-like growth factor-1 and brain health:Evidence from 369,711 participants in the UK Biobank[J]. Alzheimer's Research & Therapy,2023,15(1):140
|
[85] |
PINTO-SANCHEZ M I,HALL G B,GHAJAR K,et al. Probiotic bifidobacterium longum NCC3001 reduces depression scores and alters brain activity:A pilot study in patients with irritable bowel syndrome[J]. Gastroenterology,2017,153(2):448-459
|
[86] |
KHAN A S,PETERSON K A,VITTAY O I,et al. Deuterium metabolic imaging of Alzheimer disease at 3-T magnetic field strength:A pilot case-control study[J]. Radiology,2024,312(1):e232407 doi: 10.1148/radiol.232407
|
[87] |
TIJMS B M,VROMEN E M,MJAAVATTEN O,et al. Cerebrospinal fluid proteomics in patients with Alzheimer's disease reveals five molecular subtypes with distinct genetic risk profiles[J]. Nature Aging,2024,4(1):33-47 doi: 10.1038/s43587-023-00550-7
|
[88] |
PHD M D,MSC P P,MSC C Z,et al. Irisin levels in cerebrospinal fluid correlate with biomarkers and clinical dementia scores in Alzheimer disease[J]. Annals of Neurology,2024,96(1):61-73 doi: 10.1002/ana.26946
|
[89] |
SZUHANY K L,OTTO M W. Assessing BDNF as a mediator of the effects of exercise on depression[J]. Journal of Psychiatric Research,2020,123:114-118 doi: 10.1016/j.jpsychires.2020.02.003
|
[90] |
XIA J,XUE X L,LIU W B,et al. The role of Fgf9 in the antidepressant effects of exercise and fluoxetine in chronic unpredictable mild stress mice[J]. Psychosomatic Medicine,2021,83(7):795-804 doi: 10.1097/PSY.0000000000000953
|
[91] |
LIU R,WANG X D,AIHARA K,et al. Early diagnosis of complex diseases by molecular biomarkers,network biomarkers,and dynamical network biomarkers[J]. Medicinal Research Reviews,2014,34(3):455-478 doi: 10.1002/med.21293
|
[92] |
CONTREPOIS K,WU S,MONEGHETTI K J,et al. Molecular choreography of acute exercise[J]. Cell,2020,181(5):1112-1130
|
[93] |
VETR N G,GAY N R,GROUP M S,et al. The impact of exercise on gene regulation in association with complex trait genetics[J]. Nature Communications,2024,15(1):3346 doi: 10.1038/s41467-024-45966-w
|
[94] |
MANY G M,SANFORD J A,SAGENDORF T J,et al. Sexual dimorphism and the multi-omic response to exercise training in rat subcutaneous white adipose tissue[J]. Nature Metabolism,2024,6:963-979 doi: 10.1038/s42255-023-00959-9
|
[95] |
WANG Z,EMMERICH A,PILLON N J,et al. Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention[J]. Nature Genetics,2022,54(9):1332-1344 doi: 10.1038/s41588-022-01165-1
|
[96] |
YAN L,WEI J,YANG F Z,et al. Physical exercise prevented stress-induced anxiety via improving brain RNA methylation (adv. sci. 24/2022)[J]. Advanced Science,2022,9(24):2270148 doi: 10.1002/advs.202270148
|
[97] |
DE MIGUEL Z,KHOURY N,BETLEY M J,et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin[J]. Nature,2021,600(7889):494-499 doi: 10.1038/s41586-021-04183-x
|
[98] |
LIU W N,HUANG Z C,ZHANG Y,et al. ASMT determines gut microbiota and increases neurobehavioral adaptability to exercise in female mice[J]. Communications Biology,2023,6(1):1126 doi: 10.1038/s42003-023-05520-8
|
[99] |
章森,刘文彬,夏杰,等. 运动改善ASMT基因敲除小鼠抑郁行为的海马蛋白质组学机制[J]. 上海体育大学学报,2024,48(3):36-48
|
[100] |
KALAY Z. Fundamental and functional aspects of mesoscopic architectures with examples in physics,cell biology,and chemistry[J]. Critical Reviews in Biochemistry and Molecular Biology,2011,46(4):310-326 doi: 10.3109/10409238.2011.582081
|
[101] |
LI X N,YU B,SUN Q T,et al. Generation of a whole-brain atlas for the cholinergic system and mesoscopic projectome analysis of basal forebrain cholinergic neurons[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(2):415-420
|
[102] |
WALTER T J,SUTER R K,AYAD N G. An overview of human single-cell RNA sequencing studies in neurobiological disease[J]. Neurobiology of Disease,2023,184:106201 doi: 10.1016/j.nbd.2023.106201
|
[103] |
CATHOMAS F,LIN H Y,CHAN K L,et al. Circulating myeloid-derived MMP8 in stress susceptibility and depression[J]. Nature,2024,626(8001):1108-1115 doi: 10.1038/s41586-023-07015-2
|
[104] |
NAGY C,MAITRA M,TANTI A,et al. Single-nucleus transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor cells and excitatory neurons[J]. Nature Neuroscience,2020,23(6):771-781 doi: 10.1038/s41593-020-0621-y
|
[105] |
SUN S H,MA S,CAI Y S,et al. A single-cell transcriptomic atlas of exercise-induced anti-inflammatory and geroprotective effects across the body[J]. The Innovation,2023,4(1):100380 doi: 10.1016/j.xinn.2023.100380
|
[106] |
JIN K,YAO Z Z,VAN VELTHOVEN C T J,et al. Cell-type specific molecular signatures of aging revealed in a brain-wide transcriptomic cell-type atlas[J]. bioRxiv,2023:2023.07. 26.550355
|
[107] |
LANGLIEB J,SACHDEV N S,BALDERRAMA K S,et al. The cell type composition of the adult mouse brain revealed by single cell and spatial genomics[J]. bioRxiv,2023:2023.03. 06.531307
|
[108] |
KATHE C,SKINNIDER M A,HUTSON T H,et al. The neurons that restore walking after paralysis[J]. Nature,2022,611(7936):540-547 doi: 10.1038/s41586-022-05385-7
|
[109] |
HUH J Y,MOUGIOS V,SKRAPARLIS A,et al. Irisin in response to acute and chronic whole-body vibration exercise in humans[J]. Metabolism,2014,63(7):918-921 doi: 10.1016/j.metabol.2014.04.001
|
[110] |
TSUCHIYA Y,ANDO D,TAKAMATSU K,et al. Resistance exercise induces a greater irisin response than endurance exercise[J]. Metabolism,2015,64(9):1042-1050 doi: 10.1016/j.metabol.2015.05.010
|
[111] |
TSAI C L,PAN C Y,TSENG Y T,et al. Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults[J]. Behavioural Brain Research,2021,413:113472 doi: 10.1016/j.bbr.2021.113472
|
[112] |
REYCRAFT J T,ISLAM H,TOWNSEND L K,et al. Exercise intensity and recovery on circulating brain-derived neurotrophic factor[J]. Medicine and Science in Sports and Exercise,2020,52(5):1210-1217 doi: 10.1249/MSS.0000000000002242
|
[113] |
PAHLAVANI H A. Exercise therapy to prevent and treat Alzheimer's disease[J]. Frontiers in Aging Neuroscience,2023,15:1243869 doi: 10.3389/fnagi.2023.1243869
|
[114] |
DORA K,TSUKAMOTO H,SUGA T,et al. Essential amino acid supplements ingestion has a positive effect on executive function after moderate-intensity aerobic exercise[J]. Scientific Reports,2023,13(1):22644 doi: 10.1038/s41598-023-49781-z
|
[115] |
SUZUKI G,TOKUNO S,NIBUYA M,et al. Decreased plasma brain-derived neurotrophic factor and vascular endothelial growth factor concentrations during military training[J]. PLoS One,2014,9(2):e89455 doi: 10.1371/journal.pone.0089455
|
[116] |
MORRIS T P,BURZYNSKA A,VOSS M,et al. Brain structure and function predict adherence to an exercise intervention in older adults[J]. Medicine and Science in Sports and Exercise,2022,54(9):1483-1492 doi: 10.1249/MSS.0000000000002949
|
[117] |
MATA J,THOMPSON R J,GOTLIB I H. BDNF genotype moderates the relation between physical activity and depressive symptoms[J]. Health Psychology,2010,29(2):130-133 doi: 10.1037/a0017261
|
[118] |
RAHMAN M S,MILLISCHER V,ZEEBARI Z,et al. BDNF Val66Met and childhood adversity on response to physical exercise and Internet-based cognitive behavioural therapy in depressed Swedish adults[J]. Journal of Psychiatric Research,2017,93:50-58 doi: 10.1016/j.jpsychires.2017.05.007
|
[119] |
PITTS B L,WHEALIN J M,HARPAZ-ROTEM I,et al. BDNF Val66Met polymorphism and posttraumatic stress symptoms in U. S. military veterans:Protective effect of physical exercise[J]. Psychoneuroendocrinology,2019,100:198-202 doi: 10.1016/j.psyneuen.2018.10.011
|
[120] |
BRYANT R A,DAWSON K S,AZEVEDO S,et al. A pilot study of the role of the BDNF Val66Met polymorphism in response to exercise-augmented exposure therapy for posttraumatic stress disorder[J]. Psychoneuroendocrinology,2024,167:107106 doi: 10.1016/j.psyneuen.2024.107106
|
[121] |
PITTS B L,WEN V,WHEALIN J M,et al. Depression and cognitive dysfunction in older U. S. military veterans:Moderating effects of BDNF Val66Met polymorphism and physical exercise[J]. The American Journal of Geriatric Psychiatry,2020,28(9):959-967 doi: 10.1016/j.jagp.2020.02.001
|
[122] |
REICHEL T,HACKER S,PALMOWSKI J,et al. Neurophysiological markers for monitoring exercise and recovery cycles in endurance sports[J]. Journal of Sports Science & Medicine,2022,21(3):446-457
|
[123] |
REICHEL T,BOßLAU T K,PALMOWSKI J,et al. Reliability and suitability of physiological exercise response and recovery markers[J]. Scientific Reports,2020,10(1):11924 doi: 10.1038/s41598-020-69280-9
|
[124] |
LEE S,NOURAEIN S,KWON J J,et al. Engineered serum markers for non-invasive monitoring of gene expression in the brain[J]. Nature Biotechnology,2024,42(11):1717-1725 doi: 10.1038/s41587-023-02087-x
|
[125] |
KONING E,VORSTMAN J,MCINTYRE R S,et al. Characterizing eating behavioral phenotypes in mood disorders:A narrative review[J]. Psychological Medicine,2022,52(14):2885-2898 doi: 10.1017/S0033291722002446
|
[126] |
WANG J,TANG J,LIANG X,et al. Hippocampal PGC-1α-mediated positive effects on parvalbumin interneurons are required for the antidepressant effects of running exercise[J]. Translational Psychiatry,2021,11(1):222 doi: 10.1038/s41398-021-01339-1
|
[127] |
LIU W N,LIU J T,HUANG Z C,et al. Possible role of GLP-1 in antidepressant effects of metformin and exercise in CUMS mice[J]. Journal of Affective Disorders,2019,246:486-497 doi: 10.1016/j.jad.2018.12.112
|
[128] |
LIU W N,LIU J T,XIA J,et al. Leptin receptor knockout-induced depression-like behaviors and attenuated antidepressant effects of exercise are associated with STAT3/SOCS3 signaling[J]. Brain,Behavior,and Immunity,2017,61:297-305
|
[129] |
黄卓淳,漆正堂,刘微娜. 运动与褪黑素抗抑郁的作用、机制以及联合策略研究进展[J]. 中国体育科技,2020,56(2):3-14
|
[130] |
BASTIOLI G,ARNOLD J C,MANCINI M,et al. Voluntary exercise boosts striatal dopamine release:Evidence for the necessary and sufficient role of BDNF[J]. The Journal of Neuroscience,2022,42(23):4725-4736 doi: 10.1523/JNEUROSCI.2273-21.2022
|
[131] |
HOROWITZ A M,FAN X L,BIERI G,et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain[J]. Science,2020,369(6500):167-173 doi: 10.1126/science.aaw2622
|
[132] |
CHEN K,ZHENG Y H,WEI J,et al. Exercise training improves motor skill learning via selective activation of mTOR[J]. Science Advances,2019,5(7):eaaw1888 doi: 10.1126/sciadv.aaw1888
|
[133] |
ZHANG W J,OU H N,ZHANG B R,et al. Treadmill exercise relieves chronic restraint stress-induced cognitive impairments in mice via activating protein phosphatase 2A[J]. Neuroscience Bulletin,2021,37(10):1487-1492 doi: 10.1007/s12264-021-00766-w
|
[134] |
陈平,李刚强,周文辉. 谷氨酸受体在帕金森病中的作用及其介导的帕金森病运动防治研究进展[J]. 体育科学,2022,42(9):72-81
|
[135] |
陈巍,魏翔,刘晓莉,等. 运动对PD模型大鼠皮层-纹状体Glu能神经传递的影响[J]. 北京体育大学学报,2015,38(2):61-66
|
[136] |
时凯旋,刘晓莉,乔德才. 运动通过调节皮层-纹状体通路功能连接可塑性改善PD模型大鼠行为[J]. 体育科学,2020,40(6):49-58
|
[137] |
CHENG T,HUANG X D,HU X F,et al. Physical exercise rescues cocaine-evoked synaptic deficits in motor cortex[J]. Molecular Psychiatry,2021,26(11):6187-6197 doi: 10.1038/s41380-021-01336-2
|
[138] |
HE Y,MADEO G,LIANG Y,et al. A red nucleus-VTA glutamate pathway underlies exercise reward and the therapeutic effect of exercise on cocaine use[J]. Science Advances,2022,8(35):eabo1440 doi: 10.1126/sciadv.abo1440
|
[139] |
JUNG S,KIM Y,KIM M,et al. Exercise pills for drug addiction:Forced moderate endurance exercise inhibits methamphetamine-induced hyperactivity through the striatal glutamatergic signaling pathway in male sprague dawley rats[J]. International Journal of Molecular Sciences,2021,22(15):8203 doi: 10.3390/ijms22158203
|
[140] |
DONG Y G,GAN Y X,FU Y M,et al. Treadmill exercise training inhibits morphine CPP by reversing morphine effects on GABA neurotransmission in D2-MSNs of the accumbens-pallidal pathway in male mice[J]. Neuropsychopharmacology,2024,49(11):1700-1710 doi: 10.1038/s41386-024-01869-4
|
[141] |
LIANG X,LI R,WONG S H S,et al. The effects of exercise interventions on executive functions in children and adolescents with autism spectrum disorder:A systematic review and meta-analysis[J]. Sports Medicine,2022,52(1):75-88 doi: 10.1007/s40279-021-01545-3
|
[142] |
朱笑彤,毕小羽,朱飞龙,等. ADHD学龄儿童动作协调能力与其核心症状的关系:基于执行功能的多重中介效应分析[J]. 体育科学,2023,43(7):65-73
|
[143] |
杨孟超,金鹏,王德新,等. 运动改善注意缺陷多动障碍儿童执行功能和注意力的研究进展[J]. 体育科学,2022,42(5):77-87
|
[144] |
苏余,张韧仁,何毅. 中等强度运动积极影响注意缺陷多动障碍儿童的问题行为及心率变异性研究[J]. 中国体育科技,2023,59(5):43-51
|
[145] |
ZHAO P T,CHEN K,ZHU G H,et al. Effects of aquatic exercise intervention on executive function and brain-derived neurotrophic factor of children with autism spectrum disorder[J]. Research in Developmental Disabilities,2024,150:104759 doi: 10.1016/j.ridd.2024.104759
|
[146] |
KING C,ROGERS L G,JANSEN J,et al. Adolescent treadmill exercise enhances hippocampal brain-derived neurotrophic factor (BDNF) expression and improves cognition in autism-modeled rats[J]. Physiology & Behavior,2024,284:114638
|
[147] |
SIVAYOKAN B,KING C,MALI I,et al. Aerobic exercise improves cognitive flexibility and modulates regional volume changes in a rat model of autism[J]. Behavioural Brain Research,2024,471:115136 doi: 10.1016/j.bbr.2024.115136
|
[148] |
RAHIMI R,AKHAVAN M M,KAMYAB K,et al. Maternal voluntary exercise ameliorates learning deficit in rat pups exposed,in utero,to valproic acid; role of BDNF and VEGF and their receptors[J]. Neuropeptides,2018,71:43-53 doi: 10.1016/j.npep.2018.06.006
|
[149] |
CHOI J W,HAN D H,KANG K D,et al. Aerobic exercise and attention deficit hyperactivity disorder:Brain research[J]. Medicine and Science in Sports and Exercise,2015,47(1):33-39 doi: 10.1249/MSS.0000000000000373
|
[150] |
TOSTA A,FONSECA A S,MESSEDER D,et al. Effects of gestational exercise on nociception,BDNF,and irisin levels in an animal model of ADHD[J]. Neuroscience,2024,543:37-48 doi: 10.1016/j.neuroscience.2024.02.008
|
[151] |
JEONG H I,JI E S,KIM S H,et al. Treadmill exercise improves spatial learning ability by enhancing brain-derived neurotrophic factor expression in the attention-deficit/hyperactivity disorder rats[J]. Journal of Exercise Rehabilitation,2014,10(3):162-167 doi: 10.12965/jer.140111
|
[152] |
WAKEFIELD L,AGARWAL S,TANNER K. Preclinical models for drug discovery for metastatic disease[J]. Cell,2023,186(8):1792-1813 doi: 10.1016/j.cell.2023.02.026
|
[153] |
COLEY N,GIULIOLI C,AISEN P S,et al. Randomised controlled trials for the prevention of cognitive decline or dementia:A systematic review[J]. Ageing Research Reviews,2022,82:101777 doi: 10.1016/j.arr.2022.101777
|
[154] |
SALMERON B J. Heterogeneity exists in healthy populations as well as in neuropsychiatric disorders[J]. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging,2021,6(5):501-502 doi: 10.1016/j.bpsc.2021.03.002
|
[155] |
SCHELTENS P,DE STROOPER B,KIVIPELTO M,et al. Alzheimer's disease[J]. Lancet,2021,397(10284):1577-1590 doi: 10.1016/S0140-6736(20)32205-4
|
[156] |
LU B,CHEN X,XAVIER CASTELLANOS F,et al. The power of many brains:Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration[J]. Science Bulletin,2024,69(10):1536-1555 doi: 10.1016/j.scib.2024.03.006
|
[157] |
MULAY A R,HWANG J,KIM D H. Microphysiological blood-brain barrier systems for disease modeling and drug development[J]. Advanced Healthcare Materials,2024,13(21):2303180 doi: 10.1002/adhm.202303180
|
[158] |
NANCE E,PUN S H,SAIGAL R,et al. Drug delivery to the central nervous system[J]. Nature Reviews. Materials,2022,7(4):314-331
|
[159] |
JUTHANI R,MADAJEWSKI B,YOO B,et al. Ultrasmall core-shell silica nanoparticles for precision drug delivery in a high-grade malignant brain tumor model[J]. Clinical Cancer Research,2020,26(1):147-158 doi: 10.1158/1078-0432.CCR-19-1834
|
[160] |
KAPLAN A L,CONFAIR D N,KIM K,et al. Bespoke library docking for 5-HT2A receptor agonists with antidepressant activity[J]. Nature,2022,610(7932):582-591 doi: 10.1038/s41586-022-05258-z
|
[161] |
BRACHA S,JOHNSON H J,PRANCKEVICIUS N A,et al. Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons[J]. Nature Microbiology,2024,9(8):2051-2072 doi: 10.1038/s41564-024-01750-6
|
[162] |
FAN W W,EVANS R M. Exercise mimetics:Impact on health and performance[J]. Cell Metabolism,2017,25(2):242-247 doi: 10.1016/j.cmet.2016.10.022
|
[163] |
WRANN C D,WHITE J P,SALOGIANNNIS J,et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J]. Cell Metabolism,2013,18(5):649-659 doi: 10.1016/j.cmet.2013.09.008
|
[164] |
KOBILO T,YUAN C Y,VAN PRAAG H. Endurance factors improve hippocampal neurogenesis and spatial memory in mice[J]. Learning & Memory,2011,18(2):103-107
|
[165] |
CHAMBERLAIN S,GABRIEL H,STRITTMATTER W,et al. An exploratory phase Ⅱa study of the PPAR delta/gamma agonist T3D-959 assessing metabolic and cognitive function in subjects with mild to moderate Alzheimer's disease[J]. Journal of Alzheimer's Disease,2020,73(3):1085-1103 doi: 10.3233/JAD-190864
|