中文体育类核心期刊

中国人文社会科学期刊AMI综合评价(A刊)核心期刊

《中文社会科学引文索引》(CSSCI)来源期刊

美国《剑桥科学文摘》(CSA)收录期刊

中国高校百佳科技期刊

基于计算机视觉的运动动作无标记识别技术研究进展

Research Progress of Computer Vision-Based Markerless Sports Motion Capture Technology

  • 摘要:
      目的  近年来,针对运动动作的实时、精准和无标记识别成为备受关注的热点问题。系统回顾近年来国内外基于计算机视觉图像数据输入进行特定运动或目标动作的机器学习或深度学习识别相关研究,为无标记动作捕捉技术在运动动作识别等领域的应用提供参考。
      方法  通过布尔逻辑运算检索Web of Science、PubMed、Scopus、Google Scholar、IEEE Xplore、中国知网(CNKI)6个数据库收录的2000年1月—2020年6月发表的文献,分别对第一作者/发表年份、运动类型/目标动作、受试者信息、摄像机参数、图像特征提取技术、动作识别算法、动作识别质量评估方法、图像数据训练与验证方法、动作识别精度表现等关键信息进行提取。
      结果  筛选后共纳入23篇文献,39%的研究采用基于支持向量机的机器学习算法,35%的研究采用基于卷积神经网络的深度学习算法,其中分类精度、混淆矩阵和位移误差是大部分研究采用的动作识别质量评估方法。在动作技术识别和运动表现分析等领域,计算机视觉动作捕捉和相关模型、算法开发等已显示出良好的应用前景。支持向量机、主成分降维分析等传统机器学习算法仍是目前采用的主流动作识别技术,但随着卷积神经网络和循环神经网络等深度学习算法的开发与应用,在部分场景下的动作捕捉和识别效果优于传统的机器学习方法。
      结论  基于计算机视觉的场地摄像机设置、图像特征提取和动作识别算法模型开发需要结合特定的运动项目、应用场景和精度需求等进行多维度综合衡量。随着深度学习识别算法和可穿戴无线传感装备技术的发展,无标记动作捕捉的精确性、实时性和鲁棒性将得到进一步提升。

     

    Abstract:
      Objective  In recent years, real-time, accurate, and markerless recognition of sports motions has been a hot issue. The related researches on machine learning or deep learning recognition of specific sports or target motions were systemetically reviewed based on computer vision data input and a reference was provided for the application of markerless motion capture technology in the field of sports science.
      Methods  The documents published from January 2000 to June 2020 in 6 databases were collected, including Web of Science, PubMed, Scopus, Google Scholar, IEEE Xplore, and CNKI through Boolean logic operations. 23 research articles were included after screening, and the first author/year of publication, movement type/target action, subject information, camera parameters, image feature extraction technology, action recognition algorithm, action recognition quality evaluation method, image data training and verification methods, action recognition accuracy performance, and other key information were extracted.
      Results  39% of the studies use machine learning algorithms based on support vector machines, and 35% of the studies use deep learning algorithms based on convolutional neural networks. Classification accuracy, confusion matrix, and displacement error are the action recognition quality evaluation methods used in most studies.
      Conclusion  Field camera settings based on computer vision, image feature extraction, and motion recognition algorithm model development need to be combined with specific sports, application scenarios, and accuracy requirements for multi-dimensional comprehensive measurement. With the development of deep learning recognition algorithms and wearable wireless sensing equipment, the accuracy, real-time, and robustness of unmarked motion capture will be further improved.

     

/

返回文章
返回