中文体育类核心期刊

中国人文社会科学期刊AMI综合评价(A刊)核心期刊

《中文社会科学引文索引》(CSSCI)来源期刊

美国《剑桥科学文摘》(CSA)收录期刊

中国高校百佳科技期刊

奥运奖牌可以被预测吗?基于可解释机器学习视角

Can Olympic Medals Be Predicted?Based on the Interpretable Machine Learning Perspective

  • 摘要: 基于1992—2021年夏季奥运会的分项目成绩大数据,使用随机森林模型评估不同项目金牌和奖牌的可预测性,发现各项目存在较大的差异:对奖牌而言,可预测性最强的是乒乓球、羽毛球和游泳,而最弱的是水球、现代五项和排球。基于可解释机器学习方法挖掘社会经济因素对奥运奖牌的影响发现:①对同一个项目而言,女子项目的可预测准确性普遍高于男子项目;②代表队所在地区的人口规模、人均GDP、是否为主办国等因素对奖牌总数具有一定影响;③在特定项目上,代表队的传统优势(如中国的乒乓球、美国的田径等)对奖牌预测具有较大影响。

     

    Abstract: Random forest models are constructed to predict the teams' medal numbers in different Olympic events based on a large data set of 1992-2021 Summer Olympic Games. It is found that apparent differences exist in the predictability of Olympic events. For the forecast of medals, the top three most predictable events are table tennis, badminton and swimming, while the bottom three are water polo, modern pentathlon and volleyball. With interpretable machine learning methods, the social-economic features are further investigated which have important effects on the performance of Olympic Games. The results show that: (1) For the same event, the prediction accuracy of women's events is usually higher than that of men's; (2) Factors like population, GDP per capita, and the game hosting have some influences on the medal numbers; (3) For specific Olympic events, some traditionally advantageous events like table tennis in China and athletics of the USA have a large impact on the medal forecast.

     

/

返回文章
返回