中文体育类核心期刊

中国人文社会科学期刊AMI综合评价(A刊)核心期刊

《中文社会科学引文索引》(CSSCI)来源期刊

美国《剑桥科学文摘》(CSA)收录期刊

中国高校百佳科技期刊

全民健身公共服务智慧化风险评估方法以山西省太原市为例

Intelligent Risk Assessment Method of the Public Service for National FitnessTaking Taiyuan City of Shanxi Province as an Example

  • 摘要: 提出基于“改进熵权法-TOPSIS法-灰色关联分析法”的全民健身公共服务智慧化风险多属性评估方法,运用5M1E理论框架,结合随机森林算法筛选风险指标,采用改进熵权法计算评估指标权重,其中包括科学健身培训(权重为0.115)、隐私保护度(权重为0.144)、5G基础设施覆盖率(权重为0.072)等24项指标。采用TOPSIS法对风险事件进行排序,并运用灰色关联分析验证结果。筛选山西省太原市全民健身公共服务智慧化风险事件,将智慧化风险指数分为轻度(风险指数范围为0, 0.34))、中度(风险指数范围为0.34, 0.39))、重度(风险指数范围为0.39, 0.45))和特度(风险指数范围为0.45, 1)4个等级,并详细描述每个等级的特征及其影响。通过实证研究验证了该方法能够精准揭示智慧化服务中的潜在风险,并能为制定有针对性的风险管理策略提供科学依据,为智慧化公共服务领域的风险评估研究开辟了新路径。

     

    Abstract: The multi-attribute intelligent risk assessment method of the public services for national fitness, based on the "improved entropy weight method-TOPSIS method-grey relational analysis" framework, adopted the 5M1E theory framework, combined with the random forest algorithm to screen risk indicators, to calculate the weight of evaluation indicators with the improved entropy weight method, including 24 indicators such as scientific fitness training (weight of 0.115), privacy protection degree (weight of 0.144), and 5G infrastructure coverage rate (weight of 0.072). TOPSIS method was used to rank risk events and grey correlation analysis to verify and correct the results. Based on the intelligent risk event of public services for national fitness in Taiyuan City, the research divides the intelligent risk indicators into four levels: mild (range: 0, 0.34)), moderate (range: 0.34, 0.39)), severe (range: 0.39, 0.45)), and special (range: 0.45, 1), and the each level's the characteristics and impacts are described in details. This empirical research may accurately reveals the potential risks in intelligent services, providing a scientific basis for developing targeted risk management strategies, and opening up a new path for risk assessment research in the field of intelligent public services.

     

/

返回文章
返回