二维码

中文体育类核心期刊

中国人文社会科学期刊AMI综合评价(A刊)核心期刊

《中文社会科学引文索引》(CSSCI)来源期刊

美国《剑桥科学文摘》(CSA)收录期刊

中国高校百佳科技期刊

基于风洞试验的竞走项目编队气动减阻效应

胡齐, 李波, 柯鹏, 沈梦, 洪平

胡齐,李波,柯鹏,等.基于风洞试验的竞走项目编队气动减阻效应[J].上海体育学院学报,2022,46(3):62-71. DOI: 10.16099/j.sus.2021.08.02.0004
引用本文: 胡齐,李波,柯鹏,等.基于风洞试验的竞走项目编队气动减阻效应[J].上海体育学院学报,2022,46(3):62-71. DOI: 10.16099/j.sus.2021.08.02.0004
HU Qi, LI Bo, KE Peng, SHEN Meng, HONG Ping. Aerodynamic Drag Reduction Effect of Drafting Formation in Race Walking Based on Wind Tunnel Tests[J]. Journal of Shanghai University of Sport, 2022, 46(3): 62-71. DOI: 10.16099/j.sus.2021.08.02.0004
Citation: HU Qi, LI Bo, KE Peng, SHEN Meng, HONG Ping. Aerodynamic Drag Reduction Effect of Drafting Formation in Race Walking Based on Wind Tunnel Tests[J]. Journal of Shanghai University of Sport, 2022, 46(3): 62-71. DOI: 10.16099/j.sus.2021.08.02.0004

基于风洞试验的竞走项目编队气动减阻效应

基金项目: 国家自然科学基金项目(11802068)
详细信息
    作者简介:

    胡齐(ORCID:0000-0001-9408-7239),男,江西抚州人,国家体育总局副研究员;研究方向:体育工程学、运动生物力学,E-mail:hqbuaa03@126.com

    通讯作者:

    洪平(ORCID:0000-0003-0685-5707),男,湖北黄石人,国家体育总局研究员,博士,博士生导师;研究方向:体能训练理论与方法,E-mail:hongping2018@163.com

  • 中图分类号: G821

Aerodynamic Drag Reduction Effect of Drafting Formation in Race Walking Based on Wind Tunnel Tests

  • 摘要:
      目的  探讨不同编队位置对核心运动员气动阻力的影响以及与单人竞走情况相比的气动减阻效果,并量化评估不同编队策略对竞走成绩的影响。
      方法  选取由不同国家队竞走运动员人数组成的编队模拟不同竞走场景,通过风洞试验获取不同编队位置核心运动员的气动阻力。风洞试验内容包括核心运动员单人测试、双人编队测试、3人编队测试、4人编队测试。
      结果  与单人竞走情况相比,双人编队中核心运动员位于辅助运动员的正后方时气动阻力减小最为明显,减阻率可达64.9%,此编队站位为相对最佳双人编队;3人编队中核心运动员位于其他2名辅助运动员沿着运动方向连线的中间时气动阻力减小最为明显,减阻率可达79.9%,此编队站位为相对最佳3人编队;4人编队中核心运动员位于其他3名辅助运动员组成的V型编队的正后方时气动阻力减小最为明显,减阻率可达83.8%,此编队站位为相对最佳4人编队。在50 km竞走比赛中,与单人竞走成绩相比,若采用相对最佳双人编队策略,比赛成绩将至少提升约3.89%;若采用相对最佳3人编队策略,比赛成绩将至少提升约4.79%;若采用相对最佳4人编队策略,比赛成绩将至少提升约5.03%。
      结论  不同编队位置下竞走项目核心运动员的气动减阻效应存在一定差异,研究不同编队的气动减阻效应能为减小核心运动员气动阻力、优化能量分配、改进团队协作策略、提高运动成绩提供重要的科学指导。
    Abstract:
      Objectives  To determine the influences of different drafting formations on the core athlete's aerodynamic drag as well as the drag reduction effects compared to individual race walking conditions, and to quantify the effects of different drafting formation strategies on race walking performance.
      Methods  Drafting formations composed of different elite race walkers were used to simulate different race walking scenarios, and the core athlete's aerodynamic drag in different formations positions was obtained by wind tunnel tests, including individual, two-athlete, three-athlete and four-athlete drafting formation tests, respectively.
      Results  Compared to individual race walking situations, when the core athlete was located directly behind the auxiliary athlete, his aerodynamic drag reduced most obviously with the reduction rate of 64.9%, which could be the optimal two-athlete drafting formation. When the core athlete was located in the middle part of the line while the other two auxiliary athletes moved along, his aerodynamic drag reduced most obviously with the reduction rate of 79.9%, the position of which is relatively optimal; While when the core athlete was located directly at the rear of the Type V formation of three other auxiliary athletes, his aerodynamic drag reduced most obviously with the reduction rate of 83.8% as the optimal four-athlete drafting formation. In the 50 km race walking, compared to the individual race walking, the two-athlete's result would be improved approximately by at least 3.89% with the optimal drafting formation strategy; similarly, the result for three-athlete drafting formation would be improved by 4.79%, and the result for four-athlete, 5.03%.
      Conclusions  There exist differences of aerodynamic drag reduction effects for race walking core athletes in different drafting formation positions. Related research can provide important scientific guidance for reducing aerodynamic drag for core athletes, optimizing energy distribution, improving teamwork strategies and athletic performance.
  • 拉格朗日函数(Lagrange Function)是描述约束条件下优化问题的解析表达式,包含目标函数与约束条件,能有效应对约束最优化、强对偶性等问题。它在经济学理论领域的贡献是寻找多元函数在变量约束下的极值并提供最优解,在实践领域主要用于解决资源最优化问题。我国现有公共体育服务供给评价多采用指标体系构建方法,如层次分析法、熵值法、德尔菲法及模糊综合评价法等,缺乏引入经济模型进行评价的尝试。基于拉格朗日函数的特性与功能,将其应用于公共体育服务供给评价,可增加公共体育服务供给评价方法的选择范围,并提升决策部门优化公共体育服务供给方案的科学性。公共体育服务供给是一个复杂且不稳定的系统。基于双重属性的公共体育服务可细分为有形性公共体育服务与无形性公共体育服务。有形性公共体育服务主要针对基础设施的优化及资源配置效率的提升来补齐供给短板,如健身场地设施等;而无形性公共体育服务更强调公共体育服务的公益性,如公共体育服务政策等。为了实现帕累托最优,需要合理配置有形性公共体育服务和无形性公共体育服务的份额,使资源利用效率和投放效果达到最大化。因此,构建公共体育服务供给效用最大化的函数模型,需要先厘清公共体育服务供给结构,再建立带约束的拉格朗日函数,给出政府决策的最优条件,从而获取达到一般均衡的最佳比例。评价最优解要求有形性公共体育服务与无形性公共体育服务的边际替代率(MRS)相等,即有形性公共体育服务的边际效用(MU)要等于无形性公共体育服务的边际效用,此时公共体育服务的供给结构在理论上达到最佳状态。该函数模型的应用难点在于能否获得完整可靠的数据,从而保证有形性公共体育服务和无形性公共体育服务的量化标准统一。此外,拉格朗日函数解决的是带约束条件的最值问题,因此,不能用于衡量具体的公共体育服务供给水平与质量。

    胡齐:提出论文主题,设计论文框架,撰写论文;
    李波:提供技术参考,处理数据;
    沈梦:核实数据,修改论文;
    洪平:提出论文主题,指导修改论文。
  • 图  1   测试时运动员静态竞走姿势

    Figure  1.   Static race walking posture during tests

    图  2   二七厂体育综合风洞试验室

    Figure  2.   Sports comprehensive wind tunnel laboratory at Erqi factory

    图  3   双人编队竞走场景模拟

    Figure  3.   Simulation of race walking scene of two-athlete drafting formations

    图  4   3人编队竞走场景模拟

    Figure  4.   Simulation of race walking scene of three-athlete drafting formations

    图  5   4人编队竞走场景模拟

    Figure  5.   Simulation of race walking scene of four-athlete drafting formations

    图  6   双人编队不同站位下核心运动员的气动阻力

    注:括号内百分比为核心运动员在该编队站位状态下与单人状态下气动阻力的比值百分比。

    Figure  6.   Aerodynamic drag of the core athlete in different formations of two-athlete drafting

    图  7   3人编队不同站位下核心运动员的气动阻力

    注:括号内百分比为核心运动员在该编队站位状态下与单人状态下气动阻力的比值百分比。

    Figure  7.   Aerodynamic drag of the core athlete in different formations of three-athlete drafting

    图  8   4人编队不同站位下核心运动员的气动阻力

    注:括号内百分比为核心运动员在该编队站位状态下与单人状态下气动阻力的比值百分比。

    Figure  8.   Aerodynamic drag of the core athlete in different formations of four-athlete drafting

    图  9   双人编队不同站位下核心运动员的气动减阻率

    注:负值表示在某一编队站位状态下核心运动员的气动阻力相较单人状态并未减小,反而增大。

    Figure  9.   Aerodynamic drag reduction ratio of the core athlete in different formations of two-athlete drafting

    图  10   3人编队不同站位下核心运动员的气动减阻率

    Figure  10.   Aerodynamic drag reduction ratio of the core athlete in different formations of three-athlete drafting

    图  11   4人编队不同站位下核心运动员的气动减阻率

    Figure  11.   Aerodynamic drag reduction ratio of the core athlete in different formations of four-athlete drafting

    图  12   男子2组在4人编队站位3下试验现场

    Figure  12.   Field test of the second men's group in the third four-athlete drafting formation

    表  1   盒式六分量天平技术参数(精度0.2%)

    Table  1   Technical parameters of the box-type six-component balance

    分量阻力
    Fx)/N
    升力
    Fy)/N
    侧向力
    Fz)/N
    滚转力矩
    Mx)/(N·m)
    偏航力矩
    My)/(N·m)
    俯仰力矩
    Mz)/(N·m)
    量程 ±400 ±2000 ±400 ±500 ±500 ±500
    下载: 导出CSV

    表  2   编队气动减阻效应对运动成绩的影响

    Table  2   Influence of aerodynamic drag reduction effect of drafting formation on sport performance

    排名运动成绩/(h:min:s)与冠军成绩的差距/(h:min:s)若夺冠成绩须提升百分比/%若夺冠编队减阻率应达到值/%
    1 4:04:20(14660 s) 0 0 0
    2 4:04:59(14699 s) 0:00:39(39 s) 0.27 4.42
    3 4:05:02(14703 s) 0:00:42(42 s) 0.29 4.76
    4 4:05:36(14736 s) 0:01:16(76 s) 0.52 8.60
    5 4:06:49(14809 s) 0:02:29(149 s) 1.01 16.77
    6 4:07:46(14866 s) 0:03:26(206 s) 1.39 23.10
    7 4:10:22(15022 s) 0:06:02(362 s) 2.41 40.16
    8 4:11:28(15088 s) 0:07:08(428 s) 2.84 47.28
    9 4:12:28(15148 s) 0:08:08(488 s) 3.22 53.69
    10 4:13:56(15236 s) 0:09:36(576 s) 3.78 63.01
    下载: 导出CSV
  • [1]

    LI T,ISHIHARA T. Numerical study on wake galloping of tandem circular cylinders considering the effects of mass and spacing ratios[J]. Journal of Wind Engineering and Industrial Aerodynamics,2021,210:104536 doi: 10.1016/j.jweia.2021.104536

    [2]

    ALAM M M, MEYER J P. Fluid dynamics around twin cylinders and interactions[C]. 8th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics HEFAT 2011, July 11-13, Pointe Aux Piments, Mauritius. 2011: 635-649

    [3]

    BELLOLI M,GIAPPINO S,ROBUSTELLI F,et al. Drafting effect in cycling:Investigation by wind tunnel tests[J]. Procedia Engineering,2016,147:38-43 doi: 10.1016/j.proeng.2016.06.186

    [4]

    EDWARDS A G,BYRNES W C. Aerodynamic characteristics as determinants of the drafting effect in cycling[J]. Medicine and Science in Sports and Exercise,2007,39(1):170-176 doi: 10.1249/01.mss.0000239400.85955.12

    [5]

    BLOCKEN B,TOPARLAR Y,VAN DRUENEN T,et al. Aerodynamic drag in cycling team time trials[J]. Journal of Wind Engineering and Industrial Aerodynamics,2018,182:128-145 doi: 10.1016/j.jweia.2018.09.015

    [6]

    BLOCKEN B,MALIZIA F,DRUENEN T,et al. Aerodynamic benefits for a cyclist by drafting behind a motorcycle[J]. Sports Engineering,2020,23(1):1-11 doi: 10.1007/s12283-019-0315-4

    [7]

    MALIZIA F,BLOCKEN B. Bicycle aerodynamics:History,state-of-the-art and future perspectives[J]. Journal of Wind Engineering and Industrial Aerodynamics,2020,200:104134 doi: 10.1016/j.jweia.2020.104134

    [8]

    FITTON B,CADDY O,SYMONS D. The impact of relative athlete characteristics on the drag reductions caused by drafting when cycling in a velodrome[J]. Proceedings of the Institution of Mechanical Engineers,Part P:Journal of Sports Engineering and Technology,2018,232(1):39-49 doi: 10.1177/1754337117692280

    [9]

    BLOCKEN B,DEFRAEYE T,KONINCKX E,et al. CFD simulations of the aerodynamic drag of two drafting cyclists[J]. Computers & Fluids,2013,71:435-445

    [10]

    BASSETT D R,FLOHR J,DUEY W J,et al. Metabolic responses to drafting during front crawl swimming[J]. Medicine and Science in Sports and Exercise,1991,23(6):744-747

    [11]

    BRISSWALTER J,HAUSSWIRTH C. Consequences of drafting on human locomotion:Benefits on sports performance[J]. International Journal of Sports Physiology and Performance,2008,3(1):3-15 doi: 10.1123/ijspp.3.1.3

    [12]

    VAN INGEN SCHENAU G J. The influence of air friction in speed skating[J]. Journal of Biomechanics,1982,15(6):449-458 doi: 10.1016/0021-9290(82)90081-1

    [13]

    RUNDELL K W. Effects of drafting during short-track speed skating[J]. Medicine and Science in Sports and Exercise,1996,28(6):765-771 doi: 10.1097/00005768-199606000-00016

    [14]

    MILLET G P,GESLAN R,FERRIER R,et al. Effects of drafting on energy expenditure in in-line skating[J]. The Journal of Sports Medicine and Physical Fitness,2003,43(3):285-290

    [15]

    BILODEAU B,ROY B,BOULAY M R. Effect of drafting on heart rate in cross-country skiing[J]. Medicine & Science in Sports & Exercise,1994,26(5):637-641

    [16]

    BILODEAU B,ROY B,BOULAY M R. Effect of drafting on work intensity in classical cross-country skiing[J]. International Journal of Sports Medicine,1995,16(3):190-195 doi: 10.1055/s-2007-972990

    [17]

    SILVA A J,ROUBOA A,MOREIRA A,et al. Analysis of drafting effects in swimming using computational fluid dynamics[J]. Journal of Sports Science & Medicine,2008,7(1):60-66

    [18]

    ZOUHAL H,BEN ABDERRAHMAN A,PRIOUX J,et al. Drafting's improvement of 3000-m running performance in elite athletes:Is it a placebo effect?[J]. International Journal of Sports Physiology and Performance,2015,10(2):147-152 doi: 10.1123/ijspp.2013-0498

    [19]

    HAUSSWIRTH C,VALLIER J M,LEHENAFF D,et al. Effect of two drafting modalities in cycling on running performance[J]. Medicine and Science in Sports and Exercise,2001,33(3):485-492 doi: 10.1097/00005768-200103000-00023

    [20]

    RENFREE A,CRIVOI CARMO E,MARTIN L,et al. The influence of collective behavior on pacing in endurance competitions[J]. Frontiers in Physiology,2015,6:373

    [21]

    KYLE C R. Reduction of wind resistance and power output of racing cyclists and runners travelling in groups[J]. Ergonomics,1979,22(4):387-397 doi: 10.1080/00140137908924623

    [22]

    BARRY N,BURTON D,SHERIDAN J,et al. Aerodynamic drag interactions between cyclists in a team pursuit[J]. Sports Engineering,2015,18(2):93-103 doi: 10.1007/s12283-015-0172-8

    [23]

    BEAUMONT F,BOGARD F,MURER S,et al. How does aerodynamics influence physiological responses in middle-distance running drafting?[J]. Mathematical Modelling of Engineering Problems,2019,6(1):129-135 doi: 10.18280/mmep.060117

    [24]

    POLIDORI G,LEGRAND F,BOGARD F,et al. Numerical investigation of the impact of Kenenisa Bekele's cooperative drafting strategy on its running power during the 2019 Berlin marathon[J]. Journal of Biomechanics,2020,107:109854 doi: 10.1016/j.jbiomech.2020.109854

    [25]

    SCHICKHOFER L,HANSON H. Aerodynamic effects and performance improvements of running in drafting formations[J]. Journal of Biomechanics,2021,122:110457 doi: 10.1016/j.jbiomech.2021.110457

    [26] 蔺世杰,郑伟涛,马勇.基于风洞试验的奥运会RS:X级帆板摇帆推进特性研究[J]. 体育科学,2021,41(3):74-83
    [27]

    CAVAGNA G A,KANEKO M. Mechanical work and efficiency in level walking and running[J]. Marine Policy,1977,268(2):467-481 doi: 10.1113/jphysiol.1977.sp011866

  • 期刊类型引用(2)

    1. 王燕妮,周志雄. 人工智能在中小学生身体活动监测中的应用. 体育教学. 2024(10): 81-82 . 百度学术
    2. 成向荣,唐正彦,刘静民,王悦. 国内外三大体力活动测量方法的比较与选择. 湖北体育科技. 2022(08): 714-720+735 . 百度学术

    其他类型引用(3)

图(12)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-08-01
  • 修回日期:  2022-01-21
  • 刊出日期:  2022-03-20

目录

    /

    返回文章
    返回
    x 关闭 永久关闭