二维码

中文体育类核心期刊

中国人文社会科学期刊AMI综合评价(A刊)核心期刊

《中文社会科学引文索引》(CSSCI)来源期刊

美国《剑桥科学文摘》(CSA)收录期刊

中国高校百佳科技期刊

功能性动作筛查预测运动损伤的可行性——一项前瞻性队列研究的meta分析

束拉, 陈国壮

束拉, 陈国壮. 功能性动作筛查预测运动损伤的可行性——一项前瞻性队列研究的meta分析[J]. 上海体育学院学报 , 2021, 45(7): 84-94. DOI: 10.16099/j.sus.2021.07.009
引用本文: 束拉, 陈国壮. 功能性动作筛查预测运动损伤的可行性——一项前瞻性队列研究的meta分析[J]. 上海体育学院学报 , 2021, 45(7): 84-94. DOI: 10.16099/j.sus.2021.07.009
SHU La, CHEN Guozhuang. Feasibility of Functional Movement Screen in Predicting Sports Injury: A Meta Analysis of Prospective Cohort Study[J]. Journal of Shanghai University of Sport, 2021, 45(7): 84-94. DOI: 10.16099/j.sus.2021.07.009
Citation: SHU La, CHEN Guozhuang. Feasibility of Functional Movement Screen in Predicting Sports Injury: A Meta Analysis of Prospective Cohort Study[J]. Journal of Shanghai University of Sport, 2021, 45(7): 84-94. DOI: 10.16099/j.sus.2021.07.009

功能性动作筛查预测运动损伤的可行性——一项前瞻性队列研究的meta分析

详细信息
    作者简介:

    束拉(ORCID: 0000-0002-5831-6716), 男, 上海人, 上海交通大学讲师; Tel.: 13816286651, E-mail: 13816286651@139.com

    通讯作者:

    陈国壮(ORCID: 0000-0002-4210-2262), 男, 河南濮阳人, 上海交通大学硕士研究生; Tel.: 15524368689, E-mail: 1641549342@qq.com

  • 中图分类号: G804.3

Feasibility of Functional Movement Screen in Predicting Sports Injury: A Meta Analysis of Prospective Cohort Study

  • 摘要:
      目的  运用meta分析的方法系统性回顾功能性动作筛查(functional movement screen,FMS)对运动损伤的预测效果。
      方法  运用STATA 15.0软件的MIDAS模块对纳入的21篇中英文文献的27组数据的真阳性数、假阳性数、真阴性数、假阴性数进行提取,对灵敏度、特异度的合并效应值进行估计,并利用汇总受试者操作特征(summary receiver operating characteristic,sROC)曲线的曲线下面积(area under curve,AUC)和Fagan列线图估计FMS的诊断准确度。采用单因素meta回归对异质性来源进行分析,通过Deeks'漏斗图不对称试验检验发表偏倚。
      结果  灵敏度的合并效应值为0.40[95%置信区间(95%CI)0.32~0.48],特异度的合并效应值为0.80(95%CI 0.74~0.85),灵敏度和特异度Q检验的P < 0.01,表明均存在一定异质性。正、负概率比的汇总预测试概率为50%,得出的正、负测试概率分别为67%和43%,AUC值为0.68(95%CI 0.63~0.72),均说明诊断准确性一般。对于灵敏度,文献类型和损伤风险阈值可能是异质性来源(P < 0.05);对于特异度,样本量、观察周期、文献质量、研究对象可能是异质性来源(P < 0.05)。Deeks'漏斗图显示纳入的21篇文献P=0.06 < 0.1,说明可能存在发表偏倚。
      结论  FMS综合评分与运动损伤之间关联强度的证据水平不足以支持其可以直接作为运动损伤的预测工具。
    Abstract:
      Objective  Meta-analysis was used to systematically review the predictive effect of functional movement screen(FMS) on sports injury.
      Methods  The MIDAS module of STATA 15.0 software was used to estimate sensitivity and specificity of 21 Chinese and Enghish literatures as well as 27 groups of data including true positive, false positive, true negative and false negative values, and to aggregate the summary receiver operating characteristic(sROC), area under curve (AUC) and Fagan nomogram to estimate the diagnostic accuracy of FMS. The sources of heterogeneity were analyzed by meta-regression analysis.Deeks' funnel diagram asymmetry test was used to test publication bias.
      Results  The combined value of sensitivity is 0.40 (95% CI 0.32-0.48), and the combined effect value of specificity is 0.80 (95% CI 0.74-0.85). The P values of sensitivity and specificity Q test are less than 0.01, indicating some heterogeneity. The aggregate predictive test probability of positive/negative likelihood ratio (LR) is 50%, and the positive/negative test probability 67% and 43% respectively, the AUC 0.68 (95% CI 0.63-0.72), all indicating a general diagnostic accuracy. For sensitivity, literature type and injury risk thresholds may be sources of heterogeneity (P < 0.05). For specificity, sample size, observation period, literature quality, and study object may be sources of heterogeneity (P < 0.05). Deeks' funnel plot showed that P=0.06 < 0.1 for the 21 included literatures, indicating the possible existence of publication bias.
      Conclusion  The evidence level of correlation strength between FMS comprehensive score and subsequent injury is insufficient to support the idea that FMS comprehensive score can be directly used as a tool for sports injury prediction.
  • 图  1   文献纳入流程

    Figure  1.   Schematic diagram of the literature inclusion process

    图  2   FMS用于损伤风险评价的meta分析

    注:FMS表示功能性动作筛查,F表示女性,M表示男性,SC表示短周期训练,LC表示长周期训练,TI表示重度损伤,OI表示中度损伤,AI表示轻度损伤,CI表示置信区间。

    Figure  2.   Meta-analysis of the diagnosis of FMS for injury risk prediction

    图  3   FMS用于损伤风险评价的meta分析Fagan列线

    注:FMS表示功能性动作筛查。

    Figure  3.   Fagan nomogram of the diagnosis of FMS for injury risk prediction

    图  4   FMS预测损伤风险的sROC曲线

    注:FMS表示功能性动作筛查,sROC表示总受试者操作特征曲线,AUC表示曲线下面积,CI表示置信区间。

    Figure  4.   sROC curve of FMS predicting risk of injury

    图  5   单因素meta回归的亚组分析

    注:*表示P < 0.05,**表示P < 0.01,***表示P < 0.001;Ob-period≥1表示观察周期≥1 a/赛季,Ob-period < 1表示观察周期 < 1 a/赛季;DRT表示损伤风险阈值。

    Figure  5.   Subgroup analysis diagram of univariate meta-regression

    图  6   评估文献发表偏倚的Deeks’漏斗图

    Figure  6.   Deeks' funnel plot to estimate the presence of publication bias

    表  1   纳入文献特征

    Table  1   Characteristics of included literatures

    作者(年份) 样本量 失访人数 年龄/岁 研究对象 观察周期 损伤风险阈值/分 受伤定义 TP FP FN TN 备注
    Hotta等[37](2015) 101 0 84 17 20.0±1.1 大学田径运动员 6个月 ≤14 TL(≥4周)、创伤除外 11 32 4 37
    McGill等[23](2015) 53 0 53 NR 37.9±5 特遣部队精英警察 5 a ≤14 除旅行、滑倒、摔倒和其他意外引起的背伤 4 13 10 26
    Bushman等[21](2016) 2 476 0 2 476 590 18~57 轻步兵旅(美国陆军) 6个月 ≤14 由于过度使用引起的受伤并且寻求医生帮助 308 283 442 743 AI
    256 335 278 937 OI
    110 481 612 573 TI
    O'Connor等[38](2011) 874 0 874 NR(0) 长周期:23.0±2.6,短周期:21.7±2.6 美国海军陆战队军官候选人 68 d:n=447;38 d:n=427 ≤14 由于过度使用引起的受伤并且寻求医生帮助 19 17 131 260 LC
    23 34 97 293 SC
    Knapik等[39](2015) 770 275 1 045 NR 18±0.7 美国海岸警卫队学员 8周 男≤14, 女≤11 任何损伤并寻求医生帮助 41 80 27 127
    31 80 112 547
    Chorba等[24](2010) 0 38 38 0 19±1.2 大学生三大球运动员 1个赛季 ≤14 寻求医生帮助 11 5 8 14
    Dossa等[25](2014) 31 0 31 11 16~20 少年冰球运动员 1个赛季 ≤14 TL(≥1次比赛) 5 3 5 7
    Kiesel等[40](2014) 238 0 238 NR NR 职业足球运动员 1个赛季 ≤14 肌肉骨骼损伤(不包括挫伤)导致训练或季前赛的任何时间损失 16 24 44 154
    Kiesel等[41](2007) 46 0 46 NR(0) NR 职业足球运动员 约4.5个月 ≤14 TL(≥3周)的严重损伤 7 3 6 30
    Mokha等[42](2016) 20 64 84 NR(0) 男:20.4±1.3,女:19.1±1.2 大学足球、排球、橄榄球运动员 1学年 ≤14 ①由于参加校内练习、力量训练或比赛而造成的损伤;②需要治疗或就医的;③由于受伤而进行了至少24 h的康复训练,或需要进行保护性夹板或胶带包扎,以便继续参加体育活动 10 19 28 27
    Everard等[43](2018) 132 0 132 NR 22.4±4.2 男性新兵 16周 ≤14 TL(≥1次训练) 10 32 18 72
    Cosio-Lima等[44](2016) 31 0 31 NR 28±4 男性海事安全应变考生 2个月 ≤14 由训练造成的任何损伤 8 2 5 16
    Alemany等[1](2017) 2 153 0 2 134 19 25±1.3 男兵 6个月 ≤14 需就医的过度使用所致的骨骼肌肉损伤及运动创伤 221 260 479 1 174
    Duke等[45](2017) 73 0 68 5 22.0±3.0 男子橄榄球联盟球员 3个月 ≤14 比赛或训练所导致的任何身体不适 17 1 31 19
    Martin等[46](2017) 27 0 27 NR(0) 13~18 高中板球运动员 1个赛季 ≤14 TL(≥1 d)、任何身体损伤 2 6 8 11
    Smith等[47](2017) 89 0 89 NR(0) 23.2±4.4 优秀男子足球运动员 1个赛季 ≤14 TL(非接触性损伤) 5 9 35 40
    Clay等[48](2016) 0 37 37 NR(0) 18岁以上 女大学生一级赛艇运动员 1个赛季 ≤14 TL(≥1 d) 7 1 17 12
    Tee等[36](2016) NR NR 62(重复测试) NR(0) NR 职业橄榄球联盟球员 6个月 ≤13 TL(≥28 d)的严重损伤 16 15 10 49
    周亢亢等[49](2017) 19 62 81 NR(0) NR 中国高水平乒乓球运动员 将近0.5 a ≤12 满足以下①②中的1条,同时满足③④。①在训练或队内比赛(队内循环、队内教学赛等)中因运动损伤连续缺席正常技战术训练课和体能训练课1周;②在赛季中因运动损伤连续缺席2场以上(包括2场)超级联赛或公开赛;③运动员就自己出现的伤病情况寻求医务保障人员的帮助;④伤病是在训练或比赛中发生的 30 5 8 38
    蒋清华[50](2017) NR NR 49 NR(0) 20.04±1.55 泉州市高校中长跑运动员 1 a ≤16 任何损伤或疼痛 16 7 9 17
    高晓嶙等[51](2017) 28 90 118 0 女:20.2±2.8,男:21.1±2.9 现役国家队、省队橄榄球运动员 1 a 女≤13.5,男≤15.5 ①除直接接触以外的其他机制引起的;②需要医疗干预;③导致1 d或多天不能参加与运动有关的活动 42 1 39 24 总体
    10 1 4 10
    35 1 32 13
    注:年龄数据以平均数±标准差形式表示;NR表示未明确报道;NR(0)表示若未明确报告失访人数,但可从结果推断,则括号内数字为失访人数;TL表示损失训练或比赛的时间,从公布的信息看,损伤的定义并不明确;TP表示真阳性数;FP表示假阳性数;FN表示假阴性数;TN表示真阴性数;AI表示轻度损伤;OI表示中度损伤;TI表示重度损伤;LC表示长周期训练;SC表示短周期训练。
    下载: 导出CSV

    表  2   队列研究质量评价

    Table  2   Quality evaluation form for cohort studies

    作者(年份) 样本代表性 组间比较 风险量度 可比性的保持 结果测量 被试参与完整性 总体质量
    Hotta等[37](2015) * ** ** ** ** ** 高质量
    McGill等[23](2015) * ** ** * ** ** 可接受
    Bushman等[21](2016) ** ** ** ** ** ** 高质量
    O'Connor等[38](2011) ** ** ** ** ** ** 高质量
    Knapik等[39](2015) ** * ** * ** ** 可接受
    Chorba等[24](2010) * * ** * ** ** 低质量
    Dossa等[25](2014) * * ** * ** ** 低质量
    Kiesel等[40](2014) * * ** * ** ** 低质量
    Kiesel等[41](2007) * * ** * ** ** 低质量
    Mokha等[42](2016) * * ** * ** ** 低质量
    Everard等[43](2018) ** * ** ** ** ** 高质量
    Cosio-Lima等[44](2016) * * ** * ** ** 低质量
    Alemany等[1](2017) ** * ** * ** ** 可接受
    Duke等[45](2017) * * ** * * ** 低质量
    Martin等[46](2017) * * ** * * ** 低质量
    Smith等[47](2017) * ** ** * ** ** 可接受
    Clay等[48](2016) * ** ** ** ** ** 高质量
    Tee等[36](2016) * ** ** ** ** * 可接受
    周亢亢等[49](2017) * ** ** ** ** ** 高质量
    蒋清华[50](2017) * ** ** * * ** 低质量
    高晓嶙等[51](2017) * * ** ** ** ** 可接受
    注:*表示不满足;**表示满足。
    下载: 导出CSV
  • [1]

    ALEMANY J A, BUSHMAN T T, GRIER T, et al. Functional movement screen: Pain versus composite score and injury risk[J]. J Sci Med Sport, 2017, 20: S40-S44 http://europepmc.org/abstract/MED/28919122

    [2]

    BARDENETT S M, MICCA J J, DENOYELLES J T, et al. Functional movement screen normative values and validity in high school athletes: Can the fmsTM be used as a predictor of injury?[J]. Int J Sports Phys Ther, 2015, 10(3): 303-308 http://europepmc.org/articles/PMC4458917

    [3]

    BOND C W, DORMAN J C, ODNEY T O, et al. Evaluation of the functional movement screen and a novel basketball mobility test as an injury prediction tool for collegiate basketball players[J]. J Strength Cond Res, 2019, 33(6): 1589-1600 doi: 10.1519/JSC.0000000000001944

    [4]

    GADZIŃSKI S, MASŁOŃ A, CZECHOWSKA D, et al. Assessment of fundamental movement patterns and risk of injury in male soccer players[J]. Physiotherapy, 2017, 24(2): 13-18 http://www.degruyter.com/view/j/physio.2017.24.issue-2/physio-2016-0008/physio-2016-0008.xml?rskey=W1xmWn&result=6

    [5]

    SCHRÖDER J, WELLMANN K, BRAUMANN K M. Der functional movement screen zur verletzungsvorhersage im männer-amateurfußball[J]. Deut Z Sportmed, 2016(2): 39-43 http://www.zeitschrift-sportmedizin.de/fileadmin/content/archiv2016/Heft_2/Schroeder_Erweitertes_Abstract.pdf

    [6]

    JUNGE A, LAMPRECHT M, STAMM H, et al. Countrywide campaign to prevent soccer injuries in Swiss amateur players[J]. Am J Sports Med, 2011, 39(1): 57-63 doi: 10.1177/0363546510377424

    [7]

    ORCHARD J W. Preventing sports injuries at the national level: Time for other nations to follow New Zealand's remarkable success[J]. Br J Sports Med, 2008, 42(6): 392-393 doi: 10.1136/bjsm.2008.047472

    [8]

    LEETUN D T, IRELAND M L, WILLSON J D, et al. Core stability measures as risk factors for lower extremity injury in athletes[J]. Med Sci Sports Exerc, 2004, 36(6): 926-934 doi: 10.1249/01.MSS.0000128145.75199.C3

    [9]

    ZAZULAK B T, HEWETT T E, REEVES N P, et al. Deficits in neuromuscular control of the trunk predict knee injury risk: A prospective biomechanical-epidemiologic study[J]. Am J Sports Med, 2007, 35(7): 1123-1130 doi: 10.1177/0363546507301585

    [10]

    HÄGGLUND M, WALDÉN M, EKSTRAND J. Previous injury as a risk factor for injury in elite football: A prospective study over two consecutive seasons[J]. Br J Sports Med, 2006, 40(9): 767-772 doi: 10.1136/bjsm.2006.026609

    [11]

    SUGIMOTO D, MYER G D, FOSS K D, et al. Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: Meta- and sub-group analyses[J]. Sports Med, 2014, 44(4): 551-562 doi: 10.1007/s40279-013-0135-9

    [12]

    COOK G, BURTON L, HOOGENBOOM B. Pre-participation screening: The use of fundamental movements as an assessment of function: part 2[J]. N Am J Sports Phys Ther, 2006, 1(3): 132-139 http://www.ncbi.nlm.nih.gov/pubmed/21522225

    [13]

    COOK G, BURTON L, HOOGENBOOM B. Pre-participation screening: The use of fundamental movements as an assessment of function: part 1[J]. N Am J Sports Phys Ther, 2006, 1(2): 62-72 http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_international-journal-sports-physical-therapy_thesis/040001797993.html

    [14]

    COOK G, BURTON L, HOOGENBOOM B J, et al. Functional movement screening: The use of fundamental movements as an assessment of function: part 1[J]. Int J Sports Phys Ther, 2014, 9(3): 396-409 http://www.ncbi.nlm.nih.gov/pubmed/21522225

    [15]

    COOK G, BURTON L, HOOGENBOOM B J, et al. Functional movement screening: The use of fundamental movements as an assessment of function: part 2[J]. Int J Sports Phys Ther, 2014, 9(4): 549-563 http://www.ncbi.nlm.nih.gov/pubmed/21522225

    [16]

    MCCALL A, CARLING C, DAVISON M, et al. Injury risk factors, screening tests and preventative strategies: A systematic review of the evidence that underpins the perceptions and practices of 44 football (soccer) teams from various premier leagues[J]. Br J Sports Med, 2015, 49(9): 583-589 doi: 10.1136/bjsports-2014-094104

    [17]

    WRIGHT A A, STERN B, HEGEDUS E J, et al. Potential limitations of the functional movement screen: A clinical commentary[J]. Br J Sports Med, 2016, 50(13): 770-771 doi: 10.1136/bjsports-2015-095796

    [18]

    MORAN R W, SCHNEIDERS A G, MAJOR K M, et al. How reliable are functional movement screening scores? A systematic review of rater reliability[J]. Br J Sports Med, 2016, 50(9): 527-536 doi: 10.1136/bjsports-2015-094913

    [19]

    BONAZZA N A, SMUIN D, ONKS C A, et al. Reliability, validity, and injury predictive value of the functional movement screen: A systematic review and meta-analysis[J]. Am J Sports Med, 2017, 45(3): 725-732 doi: 10.1177/0363546516641937

    [20]

    MCCUNN R, AUS DER FÜNTEN K, FULLAGAR H H, et al. Reliability and association with injury of movement screens: A critical review[J]. Sports Med, 2016, 46(6): 763-781 doi: 10.1007/s40279-015-0453-1

    [21]

    BUSHMAN T T, GRIER T L, CANHAM-CHERVAK M, et al. The functional movement screen and injury risk: Association and predictive value in active men[J]. Am J Sports Med, 2016, 44(2): 297-304 doi: 10.1177/0363546515614815

    [22]

    LISMAN P, O'CONNOR F G, DEUSTER P A, et al. Functional movement screen and aerobic fitness predict injuries in military training[J]. Med Sci Sports Exerc, 2013, 45(4): 636-643 doi: 10.1249/MSS.0b013e31827a1c4c

    [23]

    MCGILL S, FROST D, LAM T, et al. Can fitness and movement quality prevent back injury in elite task force police officers? A 5-year longitudinal study[J]. Ergonomics, 2015, 58(10): 1682-1689 doi: 10.1080/00140139.2015.1035760

    [24]

    CHORBA R S, CHORBA D J, BOUILLON L E, et al. Use of a functional movement screening tool to determine injury risk in female collegiate athletes[J]. N Am J Sports Phys Ther, 2010, 5(2): 47-54 http://europepmc.org/articles/PMC2953387

    [25]

    DOSSA K, CASHMAN G, HOWITT S, et al. Can injury in major junior hockey players be predicted by a pre-season functional movement scree: A prospective cohort study[J]. J Can Chiropr Assoc, 2014, 58(4): 421-427 http://www.ncbi.nlm.nih.gov/pubmed/25550667

    [26]

    FROST D M, BEACH T A, CALLAGHAN J P, et al. FMS scores change with performers' knowledge of the grading criteria-are general whole-body movement screens capturing "dysfunction"?[J]. J Strength Cond Res, 2015, 29(11): 3037-3044 doi: 10.1097/JSC.0000000000000211

    [27]

    FROST D M, BEACH T A C, CALLAGHAN J P, et al. Using the functional movement screenTM to evaluate the effectiveness of training[J]. J Strength Cond Res, 2012, 26(6): 1620-1630 doi: 10.1519/JSC.0b013e318234ec59

    [28]

    KAZMAN J B, GALECKI J M, LISMAN P, et al. Factor structure of the functional movement screen in marine officer candidates[J]. J Strength Cond Res, 2014, 28(3): 672-678 doi: 10.1519/JSC.0b013e3182a6dd83

    [29]

    WARREN M, SMITH C A, CHIMERA N J. Association of the functional movement screen with injuries in division Ⅰ athletes[J]. J Sport Rehabil, 2015, 24(2): 163-170 doi: 10.1123/jsr.2013-0141

    [30]

    WHITESIDE D, DENEWETH J M, POHORENCE M A, et al. Grading the functional movement screen: A comparison of manual (real-time) and objective methods[J]. J Strength Cond Res, 2016, 30(4): 924-933 doi: 10.1519/JSC.0000000000000654

    [31]

    DORREL B S, LONG T, SHAFFER S, et al. Evaluation of the functional movement screen as an injury prediction tool among active adult populations: A systematic review and meta-analysis[J]. Sports Health, 2015, 7(6): 532-537 doi: 10.1177/1941738115607445

    [32]

    MORAN R W, SCHNEIDERS A G, MASON J, et al. Do functional movement screen (FMS) composite scores predict subsequent injury? A systematic review with meta-analysis[J]. Br J Sports Med, 2017, 51(23): 1661-1669 doi: 10.1136/bjsports-2016-096938

    [33]

    BUNN P D S, RODRIGUES A I, BEZERRA DA SILVA E. The association between the functional movement screen outcome and the incidence of musculoskeletal injuries: A systematic review with meta-analysis[J]. Phys Ther Sport, 2019, 35: 146-158 doi: 10.1016/j.ptsp.2018.11.011

    [34] 刘鸣. 系统评价、Meta-分析设计与实施方法[M]. 北京: 人民卫生出版社, 2012
    [35]

    JARDE A, LOSILLA J M, VIVES J, et al. Q-Coh: A tool to screen the methodological quality of cohort studies in systematic reviews and meta-analyses[J]. Int J Clin Heal Psychol, 2013, 13(2): 138-146 doi: 10.1016/S1697-2600(13)70017-6

    [36]

    TEE J C, KLINGBIEL J F, COLLINS R, et al. Preseason functional movement screen component tests predict severe contact injuries in professional rugby union players[J]. J Strength Cond Res, 2016, 30(11): 3194-3203 doi: 10.1519/JSC.0000000000001422

    [37]

    HOTTA T, NISHIGUCHI S, FUKUTANI N, et al. Functional movement screen for predicting running injuries in 18-to 24-year-old competitive male runners[J]. J Strength Cond Res, 2015, 29(10): 2808-2815 doi: 10.1519/JSC.0000000000000962

    [38]

    O'CONNOR F G, DEUSTER P A, DAVIS J, et al. Functional movement screening: Predicting injuries in officer candidates[J]. Med Sci Sports Exerc, 2011, 43(12): 2224-2230 doi: 10.1249/MSS.0b013e318223522d

    [39]

    KNAPIK J J, COSIO-LIMA L M, REYNOLDS K L, et al. Efficacy of functional movement screening for predicting injuries in coast guard cadets[J]. J Strength Cond Res, 2015, 29(5): 1157-1162 doi: 10.1519/JSC.0000000000000704

    [40]

    KIESEL K B, BUTLER R J, PLISKY P J. Prediction of injury by limited and asymmetrical fundamental movement patterns in American football players[J]. J Sport Rehabil, 2014, 23(2): 88-94 doi: 10.1123/JSR.2012-0130

    [41]

    KIESEL K, PLISKY P J, VOIGHT M L. Can serious injury in professional football be predicted by a preseason functional movement screen?[J]. N Am J Sports Phys Ther, 2007, 2(3): 147-158 http://pubmedcentralcanada.ca/pmcc/articles/PMC2953296/

    [42]

    MOKHA M, SPRAGUE P A, GATENS D R. Predicting musculoskeletal injury in national collegiate athletic association division Ⅱ athletes from asymmetries and individual-test versus composite functional movement screen scores[J]. J Athl Train, 2016, 51(4): 276-282 doi: 10.4085/1062-6050-51.2.07

    [43]

    EVERARD E, LYONS M, HARRISON A J. Examining the association of injury with the functional movement screen and landing error scoring system in military recruits undergoing 16 weeks of introductory fitness training[J]. J Sci Med Sport, 2018, 21(6): 569-573 doi: 10.1016/j.jsams.2017.05.013

    [44]

    COSIO-LIMA L, KNAPIK J J, SHUMWAY R, et al. Associations between functional movement screening, the Y balance test, and injuries in coast guard training[J]. Mil Med, 2016, 181(7): 643-648 doi: 10.7205/MILMED-D-15-00208

    [45]

    DUKE S R, MARTIN S E, GAUL C A. Preseason functional movement screen predicts risk of time-loss injury in experienced male rugby union athletes[J]. J Strength Cond Res, 2017, 31(10): 2740-2747 doi: 10.1519/JSC.0000000000001838

    [46]

    MARTIN C, OLIVIER B, BENJAMIN N. The functional movement screen in the prediction of injury in adolescent cricket pace bowlers: An observational study[J]. J Sport Rehabilitation, 2017, 26(5): 386-395 doi: 10.1123/jsr.2016-0073

    [47]

    SMITH P D, HANLON M P. Assessing the effectiveness of the functional movement screen in predicting noncontact injury rates in soccer players[J]. J Strength Cond Res, 2017, 31(12): 3327-3332 doi: 10.1519/JSC.0000000000001757

    [48]

    CLAY H, MANSELL J, TIERNEY R. Association between rowing injuries and the functional movement screenTM in female collegiate division Ⅰ rowers[J]. Int J Sports Phys Ther, 2016, 11(3): 345-349 http://europepmc.org/abstract/PMC/PMC4886802

    [49] 周亢亢, 黄竹杭, 张璐, 等. 对中国高水平乒乓球运动员功能性动作筛查测试损伤风险阈值的应用研究[J]. 北京体育大学学报, 2017, 40(7): 112-119 https://www.cnki.com.cn/Article/CJFDTOTAL-BJTD201707018.htm
    [50] 蒋清华. 泉州市高校中长跑运动员FMS与运动损伤的相关性研究[J]. 四川体育科学, 2017, 36(6): 36-38 https://www.cnki.com.cn/Article/CJFDTOTAL-SCTK201706009.htm
    [51] 高晓嶙, 徐辉, 黄鹏, 等. 应用功能性动作测试评估我国橄榄球运动员损伤风险的研究[J]. 中国运动医学杂志, 2017, 36(5): 410-415 doi: 10.3969/j.issn.1000-6710.2017.05.005
  • 期刊类型引用(19)

    1. 唐煜淞,韩东辰,赵永魁. 功能性运动筛查与足球运动的关联性分析及应用. 当代体育科技. 2025(01): 1-4 . 百度学术
    2. 张娴,刘莉,孙俊,周晓斌. 探讨功能动作筛查对某部新训人员训练成绩提高及训练伤的预测意义. 创伤外科杂志. 2025(03): 166-170+185 . 百度学术
    3. 黄慧敏,曾喻容,徐海燕. 基于Meta分析的拇外翻足部矫形器的有效性探究. 皮革科学与工程. 2024(02): 84-90 . 百度学术
    4. 邢晓蕊,成玮,田海丽,徐炳祥,颜红梅,刘诚,孙钦,王汝雯,万康,张译尹,王茹. 糖尿病患者运动前测试与评估临床路径构建的经验启示与实现框架. 上海体育大学学报. 2024(05): 81-93 . 本站查看
    5. 田静静,王维涵,王美,郭振. 集体球类项目急慢性负荷比与损伤风险的meta分析. 福建师范大学学报(自然科学版). 2024(06): 121-129 . 百度学术
    6. 王耀东,董艳婷. 功能性训练对我国高水平女子体操运动员高低杠项目关节损伤的康复促进研究. 中国体育科技. 2024(10): 9-19 . 百度学术
    7. 桑园. 基于FMS的高校男子篮球运动员的运动损伤风险评估. 延边大学学报(自然科学版). 2024(04): 131-135 . 百度学术
    8. 张娜. 公路自行车运动员功能性动作筛查结果及纠正训练效果分析. 辽宁体育科技. 2023(01): 110-115 . 百度学术
    9. 马阳光,张永峰,邵玲娃,李松森,张颖如,莫惠霖,王哲,丁坦. 空军飞行人员功能性动作筛查结果分析. 联勤军事医学. 2023(02): 144-147 . 百度学术
    10. 张鑫,欧阳瑞楠. 军校学员运动损伤规律特征及其防控体系研究. 冰雪体育创新研究. 2023(04): 144-147 . 百度学术
    11. 任康,赵振东,任慧杰. 纠正性训练对排球运动员运动功能障碍影响的实验研究. 当代体育科技. 2023(09): 20-23 . 百度学术
    12. 冯雪,李赞,赵慧敏,常宇伟. 功能性动作筛查(FMS):争议、局限及拓展. 天津体育学院学报. 2023(03): 276-282+346 . 百度学术
    13. 黎宏业. 基于灰色关联分析法的消防员功能动作筛查与负重类体能测评项目关联度研究. 体育科技文献通报. 2023(05): 249-251+256 . 百度学术
    14. 王刚,宋永飞,胡绪,陈振,雷恩宇,孟涛. 军人身体关节功能筛查对新兵军事训练伤的预测效度研究. 陆军军医大学学报. 2023(20): 2189-2194 . 百度学术
    15. 于丹丹,马琼,李夏,张玉旋,肖军. 功能性动作筛查在预测运动损伤中的价值:基于诊断性试验的系统评价. 中国疗养医学. 2023(12): 1290-1296 . 百度学术
    16. 常硕. 散打运动员FMS测试成绩与力量素质的相关性研究. 拳击与格斗. 2022(01): 71-75 . 百度学术
    17. 张秋越. 功能性动作筛查(FMS)在高职男子篮球队中的应用研究. 体育视野. 2022(04): 98-100 . 百度学术
    18. 毛薇. 基于功能性动作筛查的高校健美操运动员运动损伤特征分析. 辽宁体育科技. 2022(04): 82-86 . 百度学术
    19. 余兆敏. 体育训练中运动损伤原因与恢复策略. 辽宁师专学报(自然科学版). 2021(04): 64-66 . 百度学术

    其他类型引用(24)

图(6)  /  表(2)
计量
  • 文章访问数:  448
  • HTML全文浏览量:  116
  • PDF下载量:  33
  • 被引次数: 43
出版历程
  • 收稿日期:  2021-01-11
  • 修回日期:  2021-03-20
  • 发布日期:  2021-07-14
  • 刊出日期:  2021-07-14

目录

    /

    返回文章
    返回
    x 关闭 永久关闭